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or if 7 is written for ¥
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The ) denotes summation over the roots of the determinental equation.
Equation (25) is identical to the equation of subsidence obtained in (11)
according to Heaviside's procedure. It has been deduced, however,

without the application of the Conjugate Theorem, although the same
limitations hold, namely, that there are no null or repeated roots of .

7 =

(25)
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R. A. Fisher! gives a table of x? and states that for large values of #,
the number of degrees of freedom in the distribution,

V2x% — A/2n — 1 is normally distributed with ¢ = 1. (1)

It is interesting to ask what other formulas of a similar sort might be used.

When the integrand f(x) of a definite integral vanishes at the limits
and has a single maximum, a useful approximation te the value of the
integral can sometimes be found by expanding log f(x) about its maximum
x = m, writing

o) = log f(x) = o(m) + ¢'(x — m) + Vud"(m)(x — m)2+. ..

b Lo"(my(x—m)?
flx)dx = f ¢ ™et dx (approx.)
b \/Z'r
or x)dx = ™
a f( ) \/-99

b 1 ]
or log ﬁf(x)dx = ¢(m) + 5 log 21 —  log [— "™

14 (m)
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The assumption is that the higher terms in the expansion of ¢(x) con-
tribute small amounts to the integral and that the limits ¢ and b are
sufficiently remote from the maximum x = m so that the integral may
be regarded as a complete probability integral.

The usual application of this method is to the gamma function

f xn—le-—xdx - f Pynp—l e—ypdy
0 0
where x = y”. Then

o(y) = logf(y) = log p + (np — 1) logy — »°
m = (n— 1/p)"?, —¢"(m) = p(n — 1/p)'~¥?,
o(m) =logp + (n — 1/p)log (n — 1/p) — (n — 1/p),

log T'(n) = log (n — 1)! = %log.?‘rr-l— (n - é)log(n —11)) - (n —2) 2)

When p = 1 this expression gives the well-known Stirling’s formula;
when p =2 it gives a somewhat better approximation.? One may observe
that I'(n) is defined from » = 0+ to » = «, whereas Stirling’s formula
is defined only from #» = 14 on and the alternative formula only from
n = (!/s)+ on. The method gives an approximation to I'(n) over the
whole range of the function if p = o and

T(h) = (n — 1)! =

1 1
log T'(n) = log(n — 1)! = élog27r + (n - é) logn —n

o (,n + 1\ +1
nt+1\ e
~ The following table shows the values of logy I'(#) as computed for some
small values of # with p = 1, 2, 5, ».

or T+ 1) =nl=

n = 1/s n=1 n =2 n =3 n =4 n=25
p=1 imag © —0.03520 0.28076 0.76613 1.37118
p =2 © 0.03143 0.01178 0.30813 0.78330 1.38420
p=25 0.26080 0.00320 0.00026 0.30097 0.77800 1.38006
p= 0.18194 —0.03520 —0.01796 0.28901 0.76912 1.37298
logio T (n) 0.24857 0.00000 0.00000 0.30103 0.77815 1.38021

It is seen that for small values of # the approximation given by p = «
is decidedly better than that figured from Stirling’s formula (p = 1)
though not so good as that for = 2 which corresponds to the other
formula in common use. It is especially interesting to see that with p = 5
the approximation is out of all proportion better than any of the others.

The distribution of x* is governed by the equation for the differential
frequency as

dF = Cx"™' ¢7X% dy (3)
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where C is so adjusted that the integral of dF from 0 to = is 1. The
possibility of obtaining so good an approximation to the complete integral,
which is I'(n/2) except for a multiplier, suggests that the distribution
might be obtained in a similar way.

dF = 2n/2—lc (1)()2(11/2—1) e—-(x{,’2) d (lxz)
2 : 2

— 2n/2—lcpyni>/2~1 e—y” dy (3/)
where ¥ = (x2/2).
The maximum is at

(n 1)1/1’ 1
=m=\|- — - with ¢ = s
Y 2" p DT pmj2—1/p)

The question is whether y = (x2/2)V? may be regarded as a normal
variate distributed about the mean m with the indicated value of 6. To
obtain the formula analogous to Fisher’s one should put p = 2 and multiply
the mean and standard deviation by 2. We should have .

4v/2x? about mean \/2n — 2 witho = 1.

A calculation of a comparative table shows that this result is not so good
ashis. If one takes p = 3 the analysis suggests the normal distribution of

N - 1
3/ n2 b t v —_— t = ——————
v/x2/2 about v/n/2—1/3 with ¢ 3 Vnz=1/3
or \/x* about v/n—2/3 with ¢ = ——u—-\i——-z_——_ 4)
3 n—2/3

The result is better than that given by Fisher’s formula in some parts

of the table and worse in others as shown in table 1. A considerable

trial with values of p other than 3 indicates no improvement of significance.
There is another method of attack. One may write

X2 =g _+_ e, XZ/I) - (n + 6)1/if

The expansion by the binomial theorem goes according to powers of e
or effectively of e/n, the mean value of e is zero, the mean of e? is the
second moment of x? about its mean value n and equals 27, the mean of
¢ is the kth moment of x2 about its mean and these moments may all
be obtained in terms of the I'-functions by integration of (3) multiplied
by x%*. The algebra is fairly long but straightforward and the final
results are rationalin #. Hence the mean value of x*>'? may be obtained as

() e () (s
mean (n> R T AV AR, p_1>(p— >+
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From this expression and the original expansion the moments of (x*/n)"?
about its mean can be found as

2 2 1 3
2ndmoment=;t;ﬂ @(;—1)(;—*1 +...

4 (3
3rd moment = ' (P — 1) + .

From these results it appears that if p = 3 the 3rd moment vanishes
to the order 1/#3, and the term of order 1/x? in the second moment also
vanishes. This suggests that to a considerable degree of approximation,
increasing as # increases, we may assume that

2\1/3 2 2
X s SRR e 5 e —
(n) is normally distributed about 1 on with o on (5)
It is interesting to compare this result with the tabular values of x? and
with the results of using (1) given by Fisher or (4) which was obtained
by a different method. The comparison is given in table 1.

. TABLE 1
VALUES OF x2 FOR 2 = 1, 2, 3, 10, 30, aT P = 0.80, 0.50, 0.20, 0.05, 0.01
True values marked T with those given by formulas (5), (1), (4)

] P = 0.80 P = 0.50 P =020 P = 0.05 P = 0.01
T 0.0642 0.455 1.642 3.841 6.635
1 (5) 0.0553 0.470 1.618 3.747 6.586
1) 0.0125 0.500 1.696 3.498 5.532
) 0.0102 0.333 1.600 4.287 8.119
T 0.446 1.386 3.219 5.991 9.210
2 (5) 0.450 1.405 3.195 5.936 9.220
1) 0.396 1.500 3.312 5.702 8.235
4) . 0.378 1.333 3.232 6.222 9.869
T 1.005 2.366 4.642 7.815 11.341
3 (5) 1.015 2.381 4.622 7.775 11.370
(1) 0.972 2.500 4.736 7.531 10.171
@) 0.946 2.333 4.664 7.995 11.826
T 6.179 9.342 13.442 18.307 23.209
10 (5) 6.191 9.349 13.419 18.298 23.246
(1) 6.186 9.500 13.523 18.023 22.346
(4) 6.155 9.333 13.451 18.372 23.381
T 23.364 29.336 36.250 43.773 50.892
30 (5) 23.376 29.340 36.237 43.770 50.913
(1) 23.389 29.500 36.318 43.487 50.074

4) 20.984 29.333 36.258 43.815 50.986
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Table 1 shows that the distribution (4) obtained from the differential
(3") appears to be better than (1) in some places and worse in others;
as it is not so simple it should be rejected. On the other hand the dis-
tribution (5) obtained from expansion is decidedly better than (1) in
most parts of the tables, and is indeed so good as to make it nearly equiva-
lent to the tabulated values of x? for all values of » from P = 0.80 to
P = 0.01.

Thus a probability integral table taken with the rule (5) can for most
purposes replace a table of x2. Indeed if the aim is merely to test for
“significance” with P = 0.05 the point of distinction between non-sig-
nificance and significance as is customary, we do not need a probability
integral table but merely the rule that for significance

XZ 1/3 2 _ E‘
— — (1 — — ) shall exceed 1.65 ¢/ —.
n Mn n

It is somewhat remarkable that (5) gives so good a representation as
it does over so wide a range, because the distribution of x¥? is really not
normal as may be seen from tabulation below, which gives the true mean,?
the approximate mean, the true value of o2 and the approximate value,
and the true values of 8 = us/¢?® which has been taken as 0 and of 8, =
ps/o* which has been taken as 3 in the approximation. For small values
of » the Charlier A-type expansion would have considerable terms in
addition to the first. '

2 2
s 0 2 2,
” Mean 1 on [ on B Bs

1 0.80238 0.77778 0.18704 0.22222 +0.417- 2.68
2 0.89298 0.88889 0.10533 0.11111 +0.168 2.73
3 0.92723 - 0.92593 0.07226 0.07407 +0.093 2.80
10 0.97782 0.97778 0.02217 0.02222 +0.012 2.97
30 0.99259 0.99259 0.007407 0.007407 —0.004 3.14

1 R. A. Fisher, Statistical Methods for Research Workers, 2nd Edition, 1928, pp.
96-7.

2 See E. B. Wilson, Advanced Calculus, p. 384 and p. 386, Ex. 18.

3 The true moments of x2 may obviously be expressed in terms of the I'-function.

4 In many applications of the x2-test the number of entries in some cell may be fairly
small and in that case the test may not work very well. See ‘“Goodness of Fit,”” by
Wilson, Hilferty and Maher, J. Amer. Statistical Assoc., December, 1931. From a
practical point of view this has to be borne in mind in judging how accurate an approxi-
mation to the distribution of x? is necessary for practical purposes.



