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Abstract. Although it is impossible to establish a probability from sample data for a single
enterprise so that the ratio of favorable to total future events in the enterprise approaches that
probability as the number of events approaches infinity, it is possible to compute the expecta-
tion of the probability or expected probability from sample data for a single enterprise so that
the ratio of favorable to total future events approaches that quantity as the number of such
enterprises approaches infinity. Because of this property of the expected probability, it can
serve a8 a basis for computing the expected return on an investment, with confidence that the
actual return will approach the expected return as the number of such investments increases.
Computation of expected probability Py based on a random sample from a normal parent
population and its applicability to flood-control work are discussed.

Introduction. In flood studies, it has been
demonstrated [Corps of Engrs., 1955] that the
logarithms of annual maximum flows at any lo-
cation on a stream are ordinarily distributed in
reasonable accord with the Gaussian normal dis-
tribution. In many locations, large expenditures
are being contemplated to protect a community
against a particular extreme magnitude of flow.
The anticipated frequencies of flows in excess
of various magnitudes are of primary concern
in determining the anticipated future benefits
of the project and therefore in establishing the
degree of protection that can be afforded. These
anticipated frequencies must often be based on
stream-flow records less than 25 years in length.
Thus, large expenditures can hinge on proba-
bility estimates derived from fitting a normal
distribution to less than 25 events.

Although it is recognized that large uncer-
tainties exist in the estimation of flood proba-
bilities, the manner in which they are ordinarily
used in flood-control work precludes the direct
application of tolerance limits or safety factors.
Annual flood-control benefits are computed by
the use of mathematical expectation, that is, the
sum of the cross products of estimated flood
frequencies per year and corresponding dam-
ages per flood for all pertinent ranges of flood
magnitude. If the frequencies are purposely
overestimated in order to make sure that the
structure will be safe, benefits will be overesti-

mated and uneconomical projects will result. If
they are purposely underestimated in order to
be sure that computed benefits will be obtained,
unsafe structures will result. If frequencies are
underestimated for the purpose of computing
benefits and overestimated for design purposes,
many worth-while structures would be declared
economically unsound. Thus, it is essential for
ordinary flood-control purposes that the best
possible estimate of flood probabilities be used.

To define what is wanted in the best possible
estimate of a probability is not simple. If the
true exceedance probability is known, it can be
expected that the ratio of the number of future
events in excess of the specified magnitude to
the total number of events will approach that
probability as events occur indefinitely. There
would be considerable uncertainty, however, in
what will happen in the next 50 or 100 years.
On the other hand, if the true exceedance prob-
ability is not known and must be estimated,
there is a second degree of uncertainty involved,
and there apparently can be no exact statement
regarding relative future frequencies as events
occur indefinitely. In the first case, we can at
least compute the expected return on an invest-
ment directly from known probabilities, but not
in the second case. However, it is possible to
estimate probabilities for each individual enter-
prise so that the estimated and true probabili-
ties will average out properly over a large num-
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ber of enterprises. Then a true probability state-
ment can be made, but it would be contingent
on the number of enterprises increasing toward
infinity, The probability estimate having this
quality is herein called the ezpected probability.

In its relation to flood-control work, this
would mean that, although it is not possible to
evaluate flood probabilities accurately for a
single project, probabilities for individual proj-
ects can be evaluated so that the aggregate
benefits attained at a number of independent
projects will approach the expected aggregate
benefits as the number of projects increases. In-
vestment in a single project on the basis of ex-
pected return would bear some similarity to in-
vestment in a single spin of a roulette wheel.
Just as the mathematical worth of such a spin
before it occurs can be computed, the mathe-
matical worth of a single flood-control invest-
ment could be computed.

Ezxpected exceedance probability Py. The ex-
pected exceedance probability P, of a given
magnitude that can be expressed as a function
of sample statistics (such as the sum of the
sample mean and twice the sample standard
deviation) can be defined as the average of the
true exceedance probabilities of an infinite num-
ber of magnitudes that might be determined in
the same manner from random samples of the
same size (N) derived from the same parent
population. For example, if an infinite number
of 10-event samples were obtained from a nor-
mal parent population, the sample mean plus 2
times the sample standard deviation (which sum
would represent a different magnitude in every
sample) of some extreme samples would be ex-
ceeded by more than 25 per cent of the parent
population, and that sum for some opposite-
extreme samples would be exceeded by less than
0.1 per cent. However, the average exceedance
probability of M 4 2S values based on an in-
finite number of random samples can be com-
puted mathematically or determined experi-
mentally, and this average is herein designated
Py,

If any magnitude having an expected exceed-
ance probability Py is designated as X”, then, by
definition, the average of the true exceedance
probabilities of all X” values will approach P,.
Since this is true regardless of the nature of the
parent population, it follows that the X” values
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can be obtained from different parent popula-
tions (and even by different methods) and the
statement will remain true as long as all X’
values correspond to the same fixed value of Py.
This will be demonstrated by tests based on
actual stream-flow data from different locations
(different parent populations).

Application to a normal distribution.  Pro-
schan [1953] proved that the expected exceed-
ance probability of a statistic based on the mean
and standard deviation of a sample from a nor-
mal population is a simple function of Student’s
t-distribution. In terms of Py, the relationship
is as follows:

Py = Expected prob [X > (M + kS)]

= pron [0 > {2)]

in which X is an unknown future event, % is any

constant, and ty_, is Student’s t-statistic with

N — 1 degrees of freedom. The mean (M) and
standard deviation (S) as used above are de-
termined from sample data by use of the fol-
lowing equations:

M= > X/N (2
8= D2 (X - M/N -1 3

in which X is a magnitude of a single event and
N is the number of events in the sample. Table
1 gives Py values for use with samples drawn
from a normal population and is based on equa-
tion 1 and available tables of ¢.

In order to illustrate the applicability of
Table 1, we selected 1200 events by use of
random numbers from a normal population with
a mean of gzero and a standard deviation of 1.
The events were grouped into samples of 10
each, and the mean and standard deviations for
each sample were computed in accordance with
equations 2 and 3. For each sample, various
multiples of the standard deviations were added
in turn to the mean, and the true exceedance
probability of each sum was obtained from
knowledge of the parent population. These
probabilities from all samples and for a given
number of standard deviations from the mean
were averaged. The results are shown in Table 2.
It is apparent that the average true probability
observed in the tests is much closer to the theo-
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TABLE 2. Average Probabilities

Average True Expected Normal-Curve
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retical expected probability (from Table 1) than
to the probability obtained in the usual manner
from a table of normal-curve areas.

Statistic Probability Probability Area Applicability to hydrologic frequencies. For
the purpose of testing the applicability of Table
Exceedance Probability 1 to samples drawn from various different nor-
M + 48 0039 0021 000032 mal parent populations, 70 long records of
M + 38 .0131 .0094 .0014 stream flow at stations throughout the United
M+28  .052 .045 023 States were selected for study. As noted above,
ﬁ[l +8 gg ;gg égg the logarithms of annual maximum flows are
) ) ) ordinarily distributed in reasonable accord with
Nonexceedance Probability the normal distribution. In this test, the loga-
M-8 177 .184 .159 rithms of annual maximum daily flows at each
M~-25 .04 .045 .023 station were divided into three groups, group
M —38 -0080 -0094 -0014 1 consisting of every third year beginning with
M — 48 .0022 .0021 .000032 o .
the first, group 2 consisting of every third year
This table shows k
for volues of Py o8
illustroted:
TABLE 3. Frequency Test—Annual Maximum Daily Runoff
Using 210 Samples with Average Length of 25 Years
Independent Data Data within Samples
Observed Observed
k Expected Normal-
No. Ratio Probability* No. Ratio Curve Area
Exceedance Frequency
2.7 19 .0073 .0070 .0021 .0035
2.4 30 .0115 .0137 31 .0060 .0082
2.1 62 .0238 .0253 83 .0160 .0179
1.8 99 .038 .045 176 .034 .036
1.5 165 .0683 077 322 .062 .067
1.2 295 113 .125 581 112 116
0.9 498 .192 .194 956 184 .184
0.6 752 .289 .281 1452 .279 274
0.3 1036 .398 .386 2056 .395 .382
0.0 1329 .511 .500 2657 511 .500
Nonexceedance Frequency
0.0 1271 .489 .500 .489 .500
-0.3 993 .382 .386 1974 .380 .382
—-0.6 711 .273 .281 1391 .267 274
-0.9 489 .188 .194 924 .178 .184
-1.2 311 .120 125 582 112 115
-1.5 204 .078 077 358 .069 .067
—1.8 139 .053 .045 185 .036 .036
—2.1 72 0277 .0253 87 .0187 .0179
-2.4 45 .0173 .0137 45 .0087 .0082
-2.7 30 .0115 .0070 14 .0027 .0035

* Interpolated approximately.
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TABLE 4. Frequency Test—Annual Maximum Daily Runoff
Using 210 Samples with Average Length of 12 Years

Independent Data Data within Samples
Observed Observed
k Expected Normal-
No. Ratio Probability* No. Ratio Curve Area
Exceedance Frequency

2.7 52 .0100 .0126 .0012 .0035

2.4 86 .0165 .0209 7 .0027 .0082

2.1 150 .0288 .0342 29 L0112 0179

1.8 254 .049 .056 65 .025 .036

1.5 402 077 .088 155 .060 .067

1.2 666 .128 137 282 .108 .115

0.9 1031 .198 .204 477 .183 .184

0.6 1526 .203 .289 723 .278 .274

0.3 2075 .399 .390 1015 .390 .382

0.0 2648 .509 .500 1309 .503 .500

Nonexceedance Frequency

0.0 2552 .491 .500 1291 .497 .500
-0.3 2013 .387 .390 997 .383 .382
—0.6 1493 .287 .289 722 .278 .274
-0.9 1040 .200 .204 485 .187 .184
-1.2 712 137 .137 298 115 .115
—-1.5 492 .095 .088 163 .063 .067
-1.8 324 .062 .056 80 .031 .036
—-2.1 205 .0394 .0342 32 .0123 .0179
—2.4 134 .0258 .0209 3 0012 .0082
—2.7 96 .0185 .0126 1 .0004 .0035

* Interpolated approximately.

beginning with the second, and group 3 consist-
ing of every third year beginning with the third.
Then a normal-distribution curve was fitted to
two-thirds of each record, and the indicated fre-
quencies were compared with (a) frequencies of
the magnitudes upon which the curve was based
(events within samples) and (b) frequencies of
the magnitudes in the remaining third of the
record (independent events). Portions of the
record were then interchanged, and this proced-
ure was carried out three times for each station.
Observed frequencies were combined for all 70
stations, and the results are shown in Table 3.
It will be noted that, whereas the values within
the samples are distributed very nearly nor-
mally? on the average, the independent values

1 There is a small systematic difference due to
the adjustment of the standard deviation to the
universe, that is, dividing by N — 1 instead of N
in equation 3.

observed under the same conditions are distrib-
uted very nearly in accord with P, values.

The test described above was repeated by
fitting a normal distribution curve to each third
of each record and comparing frequencies with
the remaining two-thirds. The results, shown in
Table 4, agree with those in Table 3.

A similar test was based on the logarithms of
annual maximum 60-minute precipitation meas-
ured at 121 weather stations throughout the
United States. The expected probabilities of
statistics computed from the last 25 odd-num-
bered years were compared with corresponding
exceedance frequencies observed in the last 25
even-numbered-years, and vice versa. Results,
shown in Table 5, are similar to those of Tables
3 and 4, all of which appear to support the
expected probability theory satisfactorily.

Conclusion. When the mathematical expec-
tation of chance events must be computed from
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TABLE 5. Frequency Test—Annual Maximum 60-Minute
Precipitation Using 242 Samples with Length of 25 Years

Independent Data Data within Samples
Observed Observed
k Expected Normal-
No. Ratio Probability* No. Ratio Curve Area
Exceedance Frequency

2.7 59 .0098 .0070 18 .0030 .0035

2.4 109 .0180 .0137 45 .0074 .0082

2.1 175 .0289 .0253 119 .0197 .0179

1.8 304 .050 .045 225 .037 .036

1.5 478 .079 077 433 .072 .067

1.2 773 .128 .125 698 .115 115

0.9 1137 .188 .194 1120 .185 .184

0.6 1637 .271 .281 1608 .266 274

0.3 2226 .368 .386 2205 .364 .382

0.0 2941 .486 .500 2911 .481 .500

Nonexceedance Frequency

0.0 3109 .514 .500 3139 .519 .500
—.03 2368 .391 .386 2336 .386 .382
-0.86 1695 .280 .281 1690 .279 274
-0.9 1124 .186 .194 1097 .181 .184
-1.2 709 117 .125 649 .107 .115
—1.5 417 .069 .077 342 .057 .067
—-1.8 239 .040 .045 163 027 .036
-2.1 136 .0225 .0253 75 .0124 .0179
—~2.4 58 .0096 .0137 30 .0050 .0082
-2.7 26 .0043 .0070 8 .0013 .0035

* Interpolated approximately.

random-sample data, as in estimating future
flood damages, it is believed that probabilities
should be estimated by use of the ezpected
probability concept and that the associated ex-
pectation is an exact mathematical quantity
subject only to assumptions as to the form of
the parent population and the randomness of
events.

Acknowledgment. This paper was developed 1n
the U. S. Army Engineer District, Sacramento,
California, under the Civil Works Investigations
program of the Corps of Engineers. Runoff data
used for test purposes were assembled in the
Washington District of the Corps of Engineers

and published by the U. S. Geological Survey.
Precipitation data used for test purposes were
assembled by the U. S. Weather Bureau, Hydro-
logic Services Division, in Washington, D. C.

REFERENCES

Corps of Engineers, Washington District, Stream
Flow Volume-Duration-Frequency Studies, June
1955. '

Proschan, F., Confidence and tolerance intervals
for the normal distribution, J. Am. Statist. As-
soc., Sept. 1953.

(Manuscript . received August 31, 1959; revised
March 9, 1960.)





