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SYNOPSIS

Magnitude-frequency relationships are used frequently in design problems,
yet the precise meaning of the relation is not widely understood. This paper
begins with the development of a cumulative frequency curve andits statistical
interpretation. From the frequency curve, a relation between magnitude, de-
sign period in years, and probability of not exceeding that magnitude inthe de-
sign periodis derived. The relation is presentedgraphically for easy use, and

the applicability of the general procedure is shown by sampling from a 1,023-yr
period of tree-ring indexes.

INTRODUCTION

An estimate of the frequency of an event, such as a flood or a drought, usu-
ally is obtained from a cumulative frequency curve, That curve, based on ob-
served events, and constructed by oneof several standard methods, relates the
magnitudes of events to mean recurrence intervals or to probabilities, Both
the magnitude and the recurrence interval in such a plot are subject to sam-
pling errors. The sampling error of the magnitude can be reduced only by in-
creasing the sample size. A sampling error of the recurrence intervalis pres-
ent because the recurrence interval is not a fixed valuebut is the mean length
of the intervals between events that exceed a given magnitude. The two sam-
pling errors are dependent and a procedure for combining them has not been

Note.,—Discussion open until June 1, 1961, To extend the closing date one month, a
written request must be filed with the Executive Secretary, ASCE, This paper is part
of the copyrighted Journal of the Hydraulics Division, Proceedings of the American So-
ciety of Civil Engineers, Vol, 87, No, HY 1, January, 1961,

1 Hydraulic Engr., U. S. Geological Survey, Washington 25, D, C.
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developed except by non-parametric methods. However, a relation between
magnitude, probability of exceedance (the occurrence of an event greater than
that magnitude), and design period (defined later) will allow the variability of
the recurrence interval to be assessed and will therefore provide more com-
plete information than is given by the conventional frequency curve. Sucha
relation is developed in this paper.

The theory used and the results obtained are not original. Beard, 2 Daven-
port,3 Thomas,4 Court,d Gumbel,6 Kendall,” and others have made similar
analyses. However, the method of presenting the results is new, and the im-
portance of the theory would seem to justify its wider notice,

The constructionof a cumulative frequency curve from a probability density
function and from a small sample of observations is described first. Next is
given the statistical interpretation of the cumulative frequency curve and the
derivation of the relation between magnitude, probability, and design period.
Finally, the theoretical results are substantiated by sampling from a list of
1,023 tree-ring indexes.

CONSTRUCTION OF CUMULATIVE FREQUENCY CURVES

Consider the histogram of Fig. 1 that showsthe frequency of events for sev-
eral ranges of magnitude. If the number of observations is allowed toapproach
infinity at the same time that the class interval (width of the rectangles) ap-
proaches zero, the enveloping line of the histogram will approach a smooth
curve. Then if the ordinate values aredivided by a number, such that the area
under the curve becomes one, the resulting curve is a probability density curve,
=1so shown in Fig. 1.

For the theoretical development of the cumulative frequency curve, assume
that the probability density curve is known to be that of Fig. 1. By definition,
the probability of a random event falling inany particular interval is the ratio
of the areaunder the curve withinthat interval to the total area underthe curve.
The hatched area under the curve of Fig.1 is one-tenth of the total, and by the
preceding definition the probability is 0.1 that a random event will be greater
than E. There is no probability associated with the exact event E. Probabil-
ities in continuous distributions refer only to an event being within a certain
range or of being larger or smaller than some magnitude E.

In hydrology it is conventional to interpret the cumulative frequency curve
as giving the probability of occurrence of an event “equal to or greater (less)
than.” The “equal to” portion of the statement is not supported by theory, has
no praectical meaning, and, therefore, is not used in this paper.

If thearea under the curve of Fig. 1 is divided into many vertical strips, the
relative areaof each determined and these relative areas plotted cumulatively

2 =gtatistical Analysis in Hydrology,” by L. R. Beard, Transactions, ASCE, No. 108,
1943, pp. 1110-1121.
“Discussion of Characteristics of Heavy Rainfall in New Mexico and Arizona by
Luna B. Leopold,” by R. W. Davenport, Transactions ASCE, No. 109, 1944, pp. 877-878.
4 «Frequency of Minor Floods” by Harold A.Thomas, Jr., Journal, Boston Soc. of
Civ. Engrs,, Vol, 35, No. 4, 1948, pp. 425-442,
2 ®*Some New Statistical Techniques in Geophysics,” by Arnold Court, Advances in
Geoiﬂxsics, Academic Press, Inc., New York, Vol. 1, 1952, pp. 45-85,
“The Calculated Risk in Flood Control,” by E.J.Gumbel, Applied Science Research,
The Hague, Holland, Sect. A, Vol. 5, 1955, pp. 273-230,
7 «statistical Analysis of Extreme Values,” by G. R. Kendall, First Canadian Hydro-
logy Symposium, Natl. Research Council of Canada, November 4 and 5, 1959,
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against magnitude, the result is a cumulative frequency curve suchas is shown
in Fig. 2. The cumulative curve is the integral of the density curve.

In practical work, the probability density curve is never known. The cumu-
lative frequency curve must be developed directly from the data by one of two
methods. The first requires the mathematical fitting of datato an arbitrarily-
selected theoretical distribution. Procedures are described in the literature,
The second method is semi-graphical and requires no assumptions as to the
type of distribution. It is described in the following paragraphs as an aid in
understanding subsequent developments,

The semi-graphical method of obtaining the cumulative frequency curve re-
quires (1) arranging the data in order of magnitude, (2) computing the plotting
position of each item, (3) plotting each item against its corresponding plotting
position on probability paper, and (4) fitting a line to the plotted points.

Plotting positions may be computed by one of several formulas. The more
common ones are

_ M
P =gs1 v - T TR (1)
3
p = I .. (2)
and
_ M
P = rorreerrene e (3)

inwhich p isthe probability of exceedance, N is the number of events (or years,
for annual events) used in preparing the frequency curve, and M is the order
number of an event when the events are arranged in order of magnitude irom
thelargest to the smallest, with M = 1 forthe largest. More commonly the re-
ciprocal of the probability, called the return period or recurrence interval, is
plotted, and that approach is used in this paper. The formula used here is

N+1
M~ tereressssinasaasans (4)

in which R. L is recurrence interval. The following developments are not af-
fected by the equation chosen to compute the recurrence intervals.

Only three types of probability plotting paper are commonly used; normal,
log-normal, and extreme value. The frequency curves given herein are plot-
ted to a recurrence interval scale based onan extreme-valuedistribution pro-
posed by Gumbel.8 When graphic interpretation of the plotted points is used
the resulting line is not always straight; if not, the line does not represent an
extreme-value distribution of the Gumbel8 type. An example of a cumulative
frequency curve is given in Fig. 3 for annual floods on John Day River at Mec-
Donald Ferry, Osegon, from 1905 to 1948,

Rl. =

INTERPRETATION OF THE CUMULATIVE FREQUENCY CURVE

As previously stated, the density curve of Fig. 1 defines the probability of
a random event being smaller than E as 0.9 and larger than E as 0.1, Simi-
larly, on the cumulative frequency curve of Figure 2, the event E corresponds
to a probability of exceedance of 0.1. Thus, the cumulative frequency curve

8 “On the Plotting of Flood Discharges,” by E. J. Gimbel, Trans
2 oot » actions
Geophysical Union, Part II, 1943, pp. 699-719. ons, American
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shows the probability that a single random event will exceed a given magni-
tude. If the cumulative frequency curve is based on annual events (that is, only
the largest event per year is used), then the probability given is that of an an-
nual event exceeding a certain magnitude. Now suppose the abscissa scale of
Fig. 2 i8 changed to a recurrence-interval scale by taking reciprocals of the
probabilities. The 0.1 probability becomes a 10-yr recurrence interval, and
E is called the 10-yr event. This means that the average time between annual
events that exceeds E 1810 yr. This is illustrated in Fig. 4 by considering the

Vertical lines indicate years in which [O-year event was
exceeded.Numbers indicate lengths of recurrence intervals

(mean length is 10 years)
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FIG. 4.—HYPOTHETICAL SEQUENCE OF RECURRENCE INTERVALS
DURING A 120-YEAR PERIOD
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FIG. 5.—RANDOM SEQUENCE OF RECURRENCE INTERVALS (FROM FIG. 4), SHOW-
ING THE NUMBER OF EXCEEDANCES IN EACH 10-YEAR PERIOD

random sequence of recurrence intervals in 120 yr. Although these intervals
between exceedances range from one to 31 yr the average is 10 yr. Therefore,
the event exceededcould be called a 10-yr event, Neglecting oneof thetwo end
exceedances, there are 12 exceedances in120 yr for a probability of exceedance
in any one year of 12/120 or 0.1, as previously defined. If both or neither of

the end exceedances were neglected, the computed probabilities would approxi-
mate the 0.1 value.
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Recurrence interval is an average value, thug, the n-year event will be ex-
ceeded at intervals averaging n years in length, but will also be exceeded in
more than half of a series of n-year periods. If clarification is needed, refer
again to Figs. 1 and 2. The probability of not exceeding E is 0.9, Fig, 1, and
of exceeding E, 0.1, Fig. 2. If E is assigned a value equal to the 10-yr event,
the probabilities remainthe same. The probabilityof 0.9 applies toone annual
event not exceeding E. The probability of not exceeding E in 10 yr is, by the
multiplicative law

(0.9)10 = 0,35

Similarly, the probabilities of exactly one, exactly two, etc., exceedances in
the 10-yr period can be obtained by solving the binomial equation

f(x) = nCx X (1-p)™ X it « 153

in which f(x) is the probability of x exceedances in n trials, ,Cy is the number
of combinations of n things taken x at a time, and p is the probabilityof an ex-
ceedance in one trial (see Mood9). For this problem, the probabilities are:

10€1(.1) (.9)9 = .3874
10C2(.1)2 (.9)8 = .1935
10€3(.1)3 (.9)7 = .0576
10C4(.1)% (.9)6 = 0105
10C5(.1)5 (.9)5 = .0015

P (1 exceedance in 10 yr)

]

P (2 exceedances in 10 yr)

P (3 exceedances in 10 yr)

]
I

P (4 exceedances in 10 yr)

P (5 exceedances in 10 yr)

The sum of the probabilities 0of 0, 1, 2, . ..., 10 exceedances (in a2 10-yr pe-
riod) equals one.

The probability of not exceeding the n-year event in n years is, for other
values of n and for known values of the probability of exceedance in one year:

(0.80) 2 = 0.33
(0.95)20 = .36
(0.98) 50 = .364
(0.99)100 - 3¢
(0.999)1,000 - 363

Therefore, the n-year event has a probability of approximately 1 - 0,36 =
0.64 of being exceeded one or more times in an n-year period; or 64 of 100
n-year periods would include at least one exceedance of the n-year event; or
the n-year event will be exceeded at least once in about 64% of a series of n-
year periods. The last is shown empirically in Fig. 5 in which the sequence
of exceedances of Figure 4 is repeated. The 120-yr period is divided into 12

9 *Introduction to the Theory of Statistics,” by A. M i
x . M, Mood, M -
T, New Tork, 1960, o ol y 00 eGraw-Hill Book Co.,
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ten-yr periods and 8 of the 12 periods (67%) include exceedances of theten-yr
event,

DESIGN-PROBABILITY CURVES

It has been shown that the probability of the n-year event (from a cumula-
tive frequency curve of annual values) being exceeded in an n-year period is
about 0.64. Additional information regarding the probabilities of exceedances
in a definite periodof years would be useful and can beobtained. Consider the
use to which afrequency relationship is put. Designof aproject logically might
begin with selectionof a design period, the number of years for which the pro-
ject is expected tooperate. Havingfixed that period; the designer would inquire
as to the probability of occurrence of damaging floods or of inadequate supply
during the period. The conventional frequency curve cannot answer this in-
quiry adequately. A relation between (1) magnitude, (2) probability of not ex-
ceeding that magnitude, and (3) design period would supply the answer needed.

TABLE 1.—VALUES OF p AND R, I.

n (Design period) p R.I. =1/p

(1) (2) (3)

2 .293 3.4

3 .206 4.8

5 129 7.8

10 067 14.9

20 .034 25.4

30 .023 43,0

40 017 59.0

50 .0138 72.0

100 .0069 145.0

1,000 .00069 1,450,0

Such a relationship can be obtained by modifying the conventional frequency
curve. The modifications to be described are not confidence limits on the po-
sition of the frequency curve. They provide a more complete interpretation of
the frequency curve as defined by the data.

Assume it is desired to define a relationship between magnitude of an event
E and a design period such that there is a 0.5 probability of not exceeding the
event in the design period. Further assume that the magnitude-frequency re-
lationship is exactly defined to large recurrence intervals and that the events
are randomly distributed in time. Let 1-pequal the probability of not exceeding
E in one year and let n equal the number of years. Then

(1-p)? = 0.5

from which the values of p and R. L given in Table 1 are computed.

These results indicate that the 29.4-yr event fromthe cumulativefrequency
curve isthe onethat has a 0.5 probability of not being exceeded in a single 20-yr
period. Likewise it is the 72-yr event that has an even chance of not being ex-
ceeded in a 50-yr period.

These results may beused to modify a frequency curve by plotting the mag-
nitude of the 3.4-yr recurrence interval event at the 2-yr design period, the
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7.8 at 5, the 14.9 at 10, and so forth. Similar adjustments for different prob-
abilities of not being exceeded can be computed by substituting the desired prob-
ability instead of 0.5 in the above formula and recomputing p and R.I. Results
for the probabilities of 0.25 and 0.75 are given in Table 2.

The conventional frequency curve of Fig. 3 and the data in Tables 1 and 2
are used as the basis for constructing the curves of Fig. 6. Fig. 6 shows the
design-probability curves for annual floods on John Day River at McDonald
Ferry, Oregon (based on the curve of Fig. 3). For example, the magnitude of
the event having 0.5 probability of not being exceeded in a 10-yr design period
is that corresponding to the 14,9-yr recurrence interval (see Table 1) on Fig.
3. Other points are obtained similarly. Notice that the abscissa on Fig. 6 is
the length of the design period and not a recurrence interval. These curves
are named “design-probability curves” to distinguish them from the conven-
tional cumulative frequency curve. It should be noted that the middle curve of
Fig. 6, that for P = 0.50, is essentially the same as the curve obtained by the
Beard2 method.

TABLE 2,—PROBABILITY OF NOT EXCEEDING IN n YEARS

Design Period, 0.25 0.75

n, in years P R.I p R.IL.
(1) (2) (3) (4) (5)

2 D 2.0 134 7.5

3 37 2.7 092 10.9

5 .242 4.1 056 17.8

10 130 7.7 .028 35.7

20 .067 14.9 0141 71.0

30 .045 22,2 0095 105.0

40 .034 29 4 0072 139.0

50 0273 36.6 .0057 175.0

100 .0138 72.5 .0029 345.0

1,000 .00138 25 000283 3,500.0

To further interpret the curves, consider a 20-yr design period on Fig. 6.
The probability is 0.5 that a flood of 26,700 cfs will not be exceeded in the 20-
yr period. Likewise, the probability is 0.25 that a flood of 23,000 cfs, and 0.75
that one of 31,000 cfs will not be exceeded in the 20-yr period. The latter dis-
charge is based on an extensionof the frequency curve (Fig. 3). Design-prob-
ability curves for small probabilities of exceedance arethus seen to be limited
in extent by the length of the frequency curve from which they are obtained.
If the frequency curve of Fig. 3 were plotted on Fig. 6 it would correspond to
a probability of about 0.36.

This type of plot (Fig. 6) does furnish many answers needed by the designer.
Further, it makes clear that no matter what design period is used, there is
still an appreciable probability of experiencing an extremely large event in
that period. This tends to be overlooked in interpreting the conventional fre-
quency curve,

Although the probability of experiencing no exceedances is of primary in-
terest, the probabilities associated with other outcomes help to complete the
picture. These additional probabilities, computedas shown in the previous sec-
tion, are given for several sizes of events and for 5 design periods in Table 3.
Minor inconsistencies in the table are due tothe limited number of significant
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figures used. For a given probability of no exceedances, the probability of one
or more exceedances is fixed (because the sum of the two must equal one), but
the probability of twoor more exceedances varies somewhat with the length of
the design period. It is for this reason that a range ratherthan a unique value
is shown for this condition in Fig. 6.

APPLICATION OF DESIGN-PROBABILITY CURVES TO A
LONG RECORD OF NATURAL EVENTS

A record of 1,023 tree-ring width indexes for the Rio Grande area, New
Mexico, for the period 908 A. D. to 1930 A. D. has been compiled by Smiley,

TABLE 3.—PROBABILITY OF EXCEEDANCE OF VARIOUS
EVENTS FOR FIVE DESIGN PERIODS

De- | R. 1. Pro- Number of exceedances In design period
sign of babi-
per- | event lity
iod, | from of
yoars| quen-| cee- | O | 1| 2 | 3 | & |1or|2or | or
e e more | more | more
curve in
one
year
2 2,0 | .5300 .25 .50 | .250 5 T 0.75 0.25 | ...
2 3.4 | .293 .50 .41 | 086 . . oue .50 .09
2 7.5 | 134 .75 .23 | .018 5.4 % W .25 02 L.,
5 4,13} .242 .25 .40 | .255 .082 .0130 .75 .35 | .095
5 5.0 | .200 .33 .41 | ,205 .051 .0064 67 .26 | ,055
5 7.8 | 129 .50 37 | 110 .016 .0013 .50 A3 1 .020
5 17.8 | .056 .75 .22 | 026 .002 .0001 .25 .03 | .004
10 7.7 | .130 .25 37 | .250 .100 .0273 .75 .38 | 130
10 10.0 | .100 .35 39 | 194 057 L0112 .65 .26 | 066
10 14,9 | 067 .50 .36 | .118 .022 .0028 .50 14 | 024
10 35.7 | .028 .75 .22 | ,028 .002 .0001 .25 .03 | .002
20 14,9 | .067 .25 36 | .245 .105 .0319 75 .39 | .145
20 20,0 | .050 .36 .38 | .189 .059 .0133 .64 .26 | .071
20 29.4 | .034 .50 .35 | .118 .025 .0028 .50 A5 | ,032
20 71,0 | 014 .75 .21 | ,030 .003 .0002 .25 .04 | 010
40 294 | ,034 23 .35 | .242 110 .0352 15 .40 | 158
40 40.0 | .025 .36 .37 | 185 .060 .0143 .64 .27 | .085
40 59.0 | .017 .50 .34 | 118 .026 .0041 .50 16 | 042
40 139.0 | .007 .75 .21 | .030 .003 .0002 .25 .04 | 010

Stubbs, Fmd Bannister,10 The record is a composite each part of which has
been adjusted for growth trend. The annual growth of a tree (as measured by
the tree-ring width index) in certain locations in the arid West is very sensi-

10 «5 Poundation for the Dating of Some Late Archeological Sites in the Rio Grande
Area, New Mexico,” Bulletin, University of Arizona, Vol. XXIV, No, 3 (Laboratory of
Tree-Ring Research Bulletin, No. 6).



HY 1 NATURAL EVENTS 25

P is the probability 1hatf1he stated number of

rree—ripg indexes will beless than the curve
value in the corresponding design period

200

|

!

P (NONE) = .25\

100X P (1 OR MORE)= 75
P{NONE) =50

P (1 OR MORE)= 50
50—{20R MORE)=09 to.l

=< P (NONE)- 75
@ P (I OR MORE

2 (2 OR MORE)~ 0210 o
2 20—

s

w

&

(= 10

5»—..
| l
2 3 5 10 20 50 100
DESIGN PERIOD IN YEARS

FIG. 8.—DESIGN PROBABILITY CURVES OF TREE-RING INDEXES
(BASED ON CURVE OF FIG. T}

I
500 i
| yd
i
i a
{
100 ‘l /"
| /,,/f
s
g Q
= |
=
= 0 4 P (of not less than) = {25
2 O P (of not less than) =35
x P (of not less than) =|.50
o P (of not less than) =[.75
|

| 10 100 500 1000
THEORETICAL NUMBER

FIG. 9,—COMPARISON OF ACTUAL AND THEORETICAL NONEXCEEDANCES FROM
ANALYSIS OF A 1,023-YEAR RECORD OF TREE-RING INDEXES



28 January, 1961 HY 1

tive to weather conditions. As previously proposed by Douglass11 the record
of tree-ring width indexes has some of the characteristics of a weather record.

Fig.7 shows the cumulative frequency curve obtained fromthe 1,023 indexes.
From that curve the design-probability curves of Fig. 8 were obtained by the
method previously described. These design-probability curves were verified
by dividing the 1,023-yr record into n-year periods and comparing the actual
and theoretical mumber of periods in which the appropriate index value was
not exceeded.

From Tables 1 and 2 and Fig. 7, the values shown in Table 4 are obtained
for a 20-yr period.

The valuesof tree-ring index in Table4 are the ones that define the design-
probability curves of Fig, 8 at a design period of 20 yr. Using these index val-
ues, the corresponding theoretical number of nonexceedances can be checked

TABLE 4
Probability of not being Recurrence Tree-ring
exceeded in 20 years interval index
(1) (2) (3)
0.25 14,9 41
.36 20.0 35
.50 29 .4 29
.75 71 17

by counting the number of 20-yr periods in the original record in which these
index values are not exceeded (not exceeded means “greater than” here be-
cause the cumulative frequency curve gives values of “less than”). There are
51 twenty-yr periods in the record. The number of 20-yr minimums greater
than the index values are given in Table 5. The record was also divided into

TABLE 5.—TWENTY YEAR MINIMUMS GREATER THAN THE INDEX VALUES

Index Value 41 35 29 17
Theoretical Number 12.8 18.4 25,5 38.2
Actual number 17 20 25 38

2, 5, 10, and 40-yr periods and similarly studied. These results together with
those obtained for 20-yr periods are shown in Fig. 9. Agreement between ac-
tual and theoretical numbers is good enough to substantiate applicability of the
method to this typeof naturalevent, For this example the cumulative frequency
curve 18 known. In actual practice, a curve based on a small sample must be

used and the reliability of the results obtained will depend on the sampling
error.

11 «Climatic Cycles and Tree Growth: A Stud
s y of the Annual Rings of Trees in Re-
lation to Climate and Solar Activity” by A.E. Douglass, Publication No. 2890, Carnegie
Inst., Washington, D, C,, 1928,





