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INTRODUCTION

The probability of exceeding a given flood size obtained from a mathe-
matically fitted flood-frequency curve is a biased estimate of flood risk as
demonstrated by Beard (2). This bias, which is due largely to the time-
sampling error of a T-year peak estimated from a finite series of annual
peaks, was evaluated by Beard for streamflow sites where the population of
annual peaks was assumed to be normal or log-normal, In a later report,
Beard (3) notes that the same amount of bias is appropriately applicable to
Pearson Type III distributions having small skew coefficients. The Work
Group on Flood Frequency Methods, Hydrology Committee, Water Resources
Council, which established log-Pearson.Type III distributions as the uniform
method of flood-frequency analysis for federal agencies, concluded that the
bias should be given further study (4). According to Stratton and others (9),
the unreliability in benefit-cost ratios caused by inaccuracy in hydrologic,
hydraulic and economic factors requires that design flood criteria be ad-
justed upward to assure a reasonable margin of functional safety.

All flood-frequency curves are in error to some extent, whether based on
observed annual peaks or estimated from generalized relations. There is no
way to tell whether a particular curve is too high or too low. Its accuracy,
however can be appraised by considering the standard error of estimated 7-
year peak flows given by the curve. This accuracy can then be used to com-
pute the flood-risk curve that should be used to compute the average annual
cost of potential flood damage or to compute flood insurance rates. Flood-
risk curves are sufficiently higher than flood-frequency curves to represent
the risk due to inaccuracy as well as that due to the estimated frequency of
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flooding. Computed average annual potential damage therefore, will balance
the actual average annual damage over a large number of projects.

This paper shows how flood risk can be computed for both gaged and un-
gaged sites at which the population of annual peaks can be assumed to follow
a log-Pearson Type Il distribution, Flood risk is first computed as the
average probability of exceedance of T-year peaks estimated from samples
of a given size, Then this average probability of exceedance is related to the
standard error of the estimated T-year peaks to give a procedure for esti-
mating flood risk at ungaged sites. Details on the statistical problems en-
countered in evaluating flood risk and the accuracy of flood-frequency curves
are omitted so that the paper may focus on general concepts.

BIAS IN FLOOD RISK

Flood risk is commonly appraised by computing the annual premium (with-
out overhead) required to equal average annual flood damage. The average
annual damage is computed by estimating the dollar value of damage that

TABLE 1.— COMPUTATION OF AVERAGE ANNUAL FLOOD DAMAGE FOR FLOOD-
FREQUENCY CURVE SHOWN IN FIG, 12

Stage, in Average damage | Average annual
feet in range, damage, in
(meters) in dollars dollars

1) (2) (3) (4) (5) (6)

12.5 0.105 0
(3.81)

Exceedance AP Damage, in
probability dollars

0.038 500 19
13.0 0.067 1,000
(3.96) -
0.027 1,500 40
13.5 0.040 2,000
(4.11)
0.017 2,500 42
14.0 0.023 3,000
(4.27)
0.013 3,650 48
14.65 0.01 4,300
(4.47)
0.01 5,300 53
15.15 0.005 5,300
(4.62)

Total av- 202
erage
annual
flood
damage,
in dol-
lars

2 Note: AP, the probability that the flood stage will be within the indicated range, is
the difference between the exceedance probabilities at the limits of the range.




HY 3 FLOOD RISK 417

would be caused by floods that reach selected ranges of flood stage. This
computation is followed by cumulating the products of the average damage in
each range times the associated probability of a flood in that range. The pro-
cedure is illustrated in Table 1 in which the exceedance probabilities are
those obtained from the flood-frequency curve shown in Fig. 1. In this exam-
ple, flood damage to a structure in the flood plain starts at stage of 12,5 ft
(3.81 m) and increases at the rate of $2,000 per ft of stage. Average damage
by floods that exceed the stage corresponding to an exceedance probability of
0.01 is assumed equal to that which would occur at a stage that has an ex-
ceedance probability of 0,005, In Table 1, for example, the average annual
damage for floods that exceed a stage of 14.65 ft (4.47 m) is assumed to be
$5,300, which is the damage that would occur at a stage of 15.15 ft (4.62 m),
and the probability of this damage is used as 0.01 because the stage would be
above 14,65 ft (4.47 m) in 1 % of the years. The one-to-one relation between
stage and discharge implied by the ordinate scale in Fig. 1 is, of course,
hypothetical.

DISCHARGE IN CUBIC FEET PER SECOND, OR STAGE IN FEET
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FIG, 1,—FLOOD-RISK CURVE FOR FLOOD-FREQUENCY CURVE BASED ON SAM-
PLES OF 10 ANNUAL PEAK FLOWS

Computation of average annual flood damage on basis of a flood-frequency
curve as shown in Table 1 is incorrect, because the flood-frequency curve
gives a biased estimate of flood risk. Average annual flood damage should be
computed from the flood-risk curve shown in Fig. 1, which is the flood-
frequency curve adjusted for bias using the equation given by Beard (2), When
the flood-risk curve isused to compute average annual flood damage as in the
previous example, assuming the same relation between stage and damage, the
required annual premium is found to be $346, which is 71 % larger than the
annual premium of $202 computed in Table 1,

The reason the flood-risk curve in Fig. 1 differs from the flood-frequency
curve is obvious from a study of Fig. 2 in which the distribution of estimated
50-yr flood peaks computed from samples of 10 peaks is shown by points
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plotted to the right of the 2 % probability line. The estimated 50-yr peak

flow, X__, for each of 100 samples of size 10 was computed as

50?7

in which X is the mean of each 10-item sample; k = the standardized deviate

(7)(k = 2.054 for X,, in a normal distribution was used in this example); and
s = the sample standard deviation computed as

N
2 Xy = X)°
= £ ot e heall B OB BN SRS il ST S L B B B, (2)
GV 1)

in which X; denotes an annual peak discharge and N is the number of annual
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FIG. 2.—DISCHARGE OF 50-YR PEAKS BASED ON SAMPLES OF 10 FROM NORMAL
POPULATION OF ANNUAL PEAKS REPRESENTED BY LINE

peaks in the sample. The population of annual peaks flows from which the
samples were drawnhasa mean of 10 cfs (0.28 m?/s) and a standard deviation
of 2 efs (0.057 m3/s).

The discharge of thehighest estimated 50-yr peak flow shown in Fig. 2 has
a true exceedance probability of 0.048 % and that of the lowest estimated 50-
yr peak flow is 25 %. The average probability of exceedance of these two esti-
mates, each of which is equally likely to be computed, is about 12.5 % as
compared with the 2 % given by the reciprocal of the recurrence interval.
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The average exceedance probability of all 100 points shown in Fig. 2 is 4.11 %,
while the average discharge of the 100 points (13.96 cfs or 0.395 m3/s) has an
exceedance probability of only 2.4 %.

The term average exceedance probability used in this paper for the ab-
scissa scale of the flood-risk curve in Fig. 1 is the same as expected proba-
bility defined by Beard (2) as being the estimated probability for each project
such that the estimated and true probabilities will average out properly over
a large number of projects. Thus, the concept of average exceedance proba-
bility should provide the basis for calculating insurance rates for flood risk
and for comparing the true cost of alternate designs. The term T-year peak
is defined in the normal manner as the peak discharge corresponding to the
exceedance probability of the frequency curve, and T is the reciprocal of the
exceedance probability.

The theoretical average exceedance probability for 50-yr peaks computed
by Eq. 1 from samples of size 10 drawn from a normal population is 4,08 %
ascompared tothe 4.11 % givenby the points in Fig. 2. For 50-yr peaks com-
puted from samples of size 50, the scatter about the mean of the peaks would
be considerably less than for samples of size 10 and the theoretical average
exceedance probability is 2.36 %,

Part of the difference between the flood-risk and the flood-frequency curve
in Fig. 1 is due to the fact that the standard deviation of small samples com-
puted by Eq. 2 tends to be too small in comparison with the standard deviation
of the population. The average standard deviation of the 100 samples used in
Fig. 2, for example, is 1,936, which is 3.2 % less than the standard deviation
of the populationas compared to a theoretical difference (8) of 2.8 %. The fact
that the bias in standard deviation and the scatter of the estimated peaks
about their mean both tend to increase the average exceedance probability of
estimated T-year peak flows complicates the analysis of bias in flood risk.

EVALUATION OF BIAS

For samples from normal or log-normal populations of annual peak flows,
the theoretical average exceedance probability of flood peaks computed by Eq.
1, is given in Table 2, under the column heading for a zero coefficient of
skew. In the absence of a method for computing similar theoretical results
for skewed distributions, the average exceedance probability of T-year peaks
estimated from samples of size N drawnfrom Pearson Type III populations of
known skew was evaluated numerically by a random sampling procedure. The
average exceedance probabilities were obtained by averaging the true proba-
bilities of exceedance of T-year peaks computed by use of Eqs. 1 and 2, and
the results are summarized in Table 2 under the column headings for the
appropriate coefficient of skew. The % values used in Eq. 1 were the % values
associated with the skew coefficients of the population of annual peaks. All
results in Table 2 include the effect of bias in the standard deviation com-
puted by Eq. 2 as well as the bias due to the scatter of the estimates about
their mean,

In Table 3, the effect of bias in standard deviation has been removed to
show the average exceedance probability due solely to the scatter (time-
sampling error) of estimated T-year peak flows about their mean., These ad-
justed probabilities approximate what wouldbe obtained by a random sampling
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TABLE 2.—AVERAGE EXCEEDANCE PROBABILITY OF T-YEAR PEAKS ESTI-
MATED FROM SAMPLES OF ANNUAL PEAKS FROM PEARSON TYPE III POP-
ULATIONS OF KNOWN SKEW?2

Average Exceedance Probability, ?, for Indicated Coefficient of
Skew of Population, Cs

T N
-1.5 -1.0 -0.5 0 0.5 1.0 1.6
(normal)
1) (2) (3) (4) (5) (6) (7) (8) (9)
5 5 25.01 24.20 24,01 24.20 25.07 25.73 26.46
5 10 23,17 22,72 22.40 22.24 22.26 22.78 23.14
5 25 21.44 21.31 21.00 20.84 20,80 20.90 21.02
5 50 20.93 20,70 20.56 20.41 20.37 20.44 20,54
5 100 20.25
5 w 20.00 20.00 20,00 20,00 20.00 20.00 20,00
10 5 17.59 16.02 15,39 15.34 15.78 16,44 17.12
10 10 14.80 13,48 12,94 12.61 12,78 13.20 13.60
10 25 12.32 11.56 11.24 11.03 10,99 11.20 11.44
10 50 11,40 10.88 10,66 10.53 10.48 10.60 10.80
10 100 10,26
10 © 10.00 10,00 10,00 10,00 10.00 10.00 10.00
20 5 14,16 11.84 10.76 10,29 10.50 11.00 11.64
20 10 10.83 8.85 7.98 7.49 7.62 7.92 8.32
20 25 8.01 6.74 6.22 5.97 5.95 6.09 6.30
20 50 6.77 5.95 5.64 5,49 5.47 5.53 5.63
20 100 5.22
20 w0 5.00 5.00 5.00. 5,00 5.00 5.00 5.00
50 5 10.62 8.90 7.35 6,58 6.63 6.92 7.38
50 10 8.33 5.76 4.61 4,08 4.05 4,22 4.53
50 25 5,39 3.67 2.99 2,78 2.71 2.80 2,95
50 50 4,03 2,91 2.50 2.36 2.34 2.39 2.48
50 100 2.20
50 e 2.00 2.00 2,00 2.00 2.00 2.00 2.00
100 5 11.02 7.62 5.84 4.92 4,83 5.04 5.40
100 10 7.35 4,47 3.21 2.70 2.58 2,70 2,98
100 25 4.43 2.51 1.84 1.59 1.53 1.58 1469
100 50 3.06 1.79 1.40 1.28 1.25 1.28 1.34
100 100 1.14
100 o 1.00 -1.00 1,00 1.00 1.00 1.00 1.00
200 5 10.46 6.75 4.82 3.79 3.62 3.76 4.04
200 10 6.78 3.65 2.40 1.81 1.70 1.76 2.01
200 25 3.87 1.83 1.17 0.93 0.88 0.91 0.99
200 50 2.51 1.17 0.82 0.69 0.67 0.69 0.73
200 100 0.60
200 w© 0.50 0.50 0.50 0.50 0.50 0.50 0.50
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TABLE 2.—CONTINUED

1) (2) (3) (4) (5) (6) (7) (8) (9)
1,000 5 9.46 5.52 3.32 2.28 2.00 2.02 2.19
1,000 10 6.12 2,62 1.28 0.80 0.68 0.69 0.83
1,000 25 3.27 1.04 0.44 0.29 0.25 0.26 0.29
1,000 50 1.92 0.55 0.24 0.18 0.16 0.17 0.19
1,000 100 0.14
1,000 o0 0.10 0,10 0.10 0.10 0.10 0.10 0.10
& Note: T = recurrence interval, in years; N = number of annual peaks in each

sample; and P = average exceedance probability of many estimated T-year peaks.

procedure if Eq. 2 were adjusted to remove the bias in standard deviation.
The theoretical standard errors of T-year peaks (5) are also shown in Table
3 to define relations between standard error and average exceedance proba-
bility for given values of 7 and cf coefficient of skew. Such relations hold
also for log-Pearson Type III distributions if the logarithmic standard devia-
tion and skew coefficient of the population are used in entering the table. The
theoretical values of SEXT/U in Table 3 were obtained by dividing the R val-

ues from Table 4 by VN,

Relations between standard error of estimated 50-yr peak flows and their
average exceedance probability obtained from Table 3 are shown in Fig. 3 as
an example. As the average exceedance probability given in Table 3 is due to
scatter of the estimated peak flows about their mean, the relations shown in
Fig. 3 are applicable to standard errors from any source so long as the dis-
tribution of the errors is approximately the same as that of the time-sampling
error.

APPLICATION TO UNGAGED SITES

At sites where no record of annual peaks has been obtained but where T-
year peak flows have been estimated by multiple regression analyses, the
average probability of exceedance of the generalized estimates can be ob-
tained from Tables 2 and 3. If the 7-year peaks used to define the regressions
are computed using a standard deviation adjusted for bias, the standard error
of the estimates can be used with Table 3 or with curves such as those shown
in Fig. 3 to obtain the average probability of exceedance. If, however, the T-
year peaks are computed using Egs. 1 and 2, the generalized estimates will
tend to be too low and the average exceedance probability shown in Table 3
will need to be increased by (Ny/Ng)**! times the amount by which P in Table
2 exceeds that in Table 3 at an N value equal to Ny, in which N is the average
length of record at the gaged sitesused inthe regression and Ny is the accuracy
inequivalent years of record for peaks estimated from the regression. If, for ex-
ample, 50-yr peaks estimated froma regressionbased onrecords with an aver-
age length of 25 yr have a standard error of prediction (6) equal to that of 50-yr
peak flows based on samples of 10 annual peaks observed at the site, Ny
would be 10 and N would be 25. Then if the population of the annual peaks is
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TABLE 3.—RELATION OF AVERAGE EXCEEDANCE PROBABILITY TO TIME-
SAMPLING STANDARD ERROR OF ESTIMATED T-YEAR PEAK FLOWS2

AVERAGE EXCEEDANCE PROBABILITY, P, AS A PERCENTAGE, AND

SEX o FOR INDICATED COEFFICIENT OF SKEW, Cs

T
T N -1,0 -0.5 0 0.5 1.0
SEXT o 7 SEXT /0 ) SEXT/ ol 7 SEXT/ o 5 SEXT/ o B
1) (2 (3) (4) (5) (6) (M) (8) (9) (10) (11) (12)

5/ 5| 0.410 |21.73| 0.456 |22.10| 0.520 |[22.96 | 0.594 |23.42 0.665 |23.90
5110 | 0.290 |21.45| 0.323 |21,35| 0.368 (21,62 0.420 21.62 | 0.470 22,04
525 | 0.183 [20.73| 0.204 |20.66| 0.233 |20.60 | 0.266 20.55 | 0.297 (20,61
5/50 | 0,130 [20.43| 0.144 |20.41| 0.165 |20.30 | 0.188 20,24 | 0,210 |20.31

10! 5| 0.460 [13.00| 0,513 [13.25| 0.604 (13.80 | 0.728 [13.95 0.875 |(14.05
10|10 | 0.325 [12,10| 0.363 |[11.97| 0.427 |11.94 | 0.515 12,02 | 0.618 (12.31
10l2s5 | 0.206 {11.06| 0.230 |10.92| 0.270 |10.80 | 0.326 [10.67 0,391 |10.89
1ols0 | 0.146 |10.67| 0.162 |10,54| 0,191 |10,41 | 0.230 [10.32| 0.277 10.40

20| 5| 0.507 8.75| 0.571 8.77| 0.686 8.78 | 0.859 8.88 | 1.084 8.86
20|10 | 0.359 7.53 | 0.403 7.10| 0.485 6.90 | 0.607 7.02 | 0.764 7.22
20|25 | 0.227 6.30| 0.255 5.93| 0.307 5.78 | 0.384 5.73 | 0.483 5.85
20|50 | 0.160 5.77| 0.180 5.51| 0.217 5.40 | 0.272 5.35 | 0.342 5.38

50| 5| 0.555 6.27 | 0.641 5.62| 0.788 5.28 | 1.023 5.07 | 1.344 5.19
5010 | 0.392 4,62 | 0.453 3.86| 0.587 3.63 | 0.723 3.63 | 0.950 3.68
50|25 | 0,248 3.34| 0.287 2.79| 0.353 2,66 | 0,458 2.59 | 0.601 2.66
50|50 | 0.176 2.76 | 0.203 2,42 0,249 2.32 | 0.323 2,28 | 0.425 2.32

100| 5 | 0.587 5.24 | 0.688 4,23| 0.861 3.84 | 1,142 3.49 | 1.537 3.55
10010 | 0.415 3.45 | 0.486 2.68| 0.609 2.36 | 0.808 2.20 | 1.087 2.26
100 |25 | 0.263 2,22 | 0.308 1.67| 0.385 1.52 | 0.511 1.42 | 0.688 1.49
100|50 | 0.186 1.68 | 0.217 1.35| 0.272 1.24 | 0.361 1.21 | 0.486 1.24

200| 5 | 0.612 4,38 | 0,731 3.33| 0.929 2,90 | 1.256 2.44 | 1.727 2.46
200(10 | 0.432 2,78 | 0.516 1.96| 0.657 1.58 | 0.888 1.43 | 1.221 1.45
200 (25 | 0.273 1.60 | 0.327 1.06 | 0.416 0.86 | 0.562 0.80 | 0.772 0.84
200 |50 | 0.193 1,10 | 0.231 0.78 | 0.294 0.67 | 0.397 0.65 | 0.546 0.66

1,000 | 5 | 0.651 3.12 | 0.813 2.02 | 1.075 1.40 | 1.509 1.13 | 2.107 0.87
1,000 (10 | 0.460 1,98 | 0.575 0.98 | 0.760 0.63 | 1.067 0.54 | 1.490 0.50
1,000 |25 | 0.291 0,90 | 0.364 0.40 | 0.481 0.27 | 0.675 0.20 | 0,942 0.21
1,000 |50 | 0.206 0,50 | 0.257 0.22 | 0.340 0.17 | 0.477 0.14 | 0,666 0.15

a i
Note: T and N are as in Table 2; P = average exceedance probability from Table 2
adjusted to remove effect of bias in sample standard deviation; SEX = theoretical stan-

dard error of the estimated peak flows; and ¢ = standard deviation of the population of an-
nual peak flows.
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TABLE 4,.—VALUES OF R FOR USE IN APPRAISING ACCURACY OF T-YEAR PEAK
ESTIMATED FROM OBSERVED ANNUAL PEAKS FROM PEARSON TYPE III POP-
ULATION OF KNOWN SKEW?2

R for Indicated Coefficient of Skew of Population

-1.5 -1.0 -0.5 -0.2 0 +0.2 +0.5 +1.,0 +1.5

2 0.845 0,933 | 0.983 0.997 | 1.000 0.997 0,983 | 0.933 0.845
0.819 0,916 | 1.020 1,102 | 1,164 | 1.229 1.328 | 1.486 | 1.638
10 0.926 1.029 | 1.148 1.258 | 1.350 | 1.454 1.629 | 1.956 2.325
20 1.006 1.184 | 1.276 1.414 | 1.534 | 1.674 | 1.921 | 2.416 3.010

25 1.026 1.163 | 1.316 1.500 | 1.591 1,747 2,013 | 2.560 3.228

50 1.075 1.246 | 1.433 1.608 | 1.763 1.950 2.288 | 3.006 3.903
100 1.107 1.313 | 1.538 1.742 | 1.925 2.146 2.554 | 3.438 4.574
200 1.130 1.367 | 1.633 1.868 | 2.078 2.334 2.809 | 3.861 5.239
1,000 1.156 1.456 | 1.819 2,129 | 2,403 2,739 3.374 | 4.712 6.760

4 Note: R = SEX m/o in which SEX is the standard error of the estimated T-

year peak, o = the standard deviation of the population of annual peaks, and N = their
number,

AVERAGE EXCEEDANCE PROBABILITY, IN PERCENT

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
ERROR FACTOR, SEy_ /0

FIG. 3.—EFFECT OF STANDARD ERROR, 50-YR PEAKS
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normal or log normal, the average exceedance probability of 3.63 given in
Table 3 at N equal to 10 should be increased by (4.08 - 3.63) times (10/25)*-
= 0.45 (0.365) = 0,16 to give 3.79 for the average probability of exceedance.
To use Tables2 and 3, the population of annual peaks at the ungaged site must
be assumed to follow a Pearson (or log-Pearson) Type III distribution and the
skew coefficient and standard deviation must be estimated.

For T-year peaks obtained by regression of the logarithmic mean, stan-
dard deviation, and skew coefficient with basin characteristics, the general-
ized logarithmic standard deviation can be used as o for the purpose of
computing the error factor, SEXT o, with which to enter Table 3, and the

generalized logarithmic skew coefficient can be used as the known skew. A

procedure would have to be developed, however, for estimating the standard

error (SEy ) of the T-year peaks estimated from the generalized statistics.
T

For T-year peaks obtained by regression with basin characteristics, the
standard error of estimate can be obtained from the standard error of esti-
mate of the regressions by giving proper attention to the relation between
time-sampling error and space-sampling error (6). Thus for such estimates
it is only necessary to select a combination of logarithmic skew coefficient
and logarithmic standard deviation to give a flood-frequency curve reasonably
compatible with the T-year peaks. This can be done by selecting a reasonable
logarithmic skew coefficientandby then finding what logarithmic standard de-
viation defines a flood-frequency curve that gives the best fit to all the T-
peaks estimated for a given site. The selection of the skew coefficient can be
refined by comparing thefit of several trial values. The logarithmic skew co-
efficient and logarithmic standard deviation of such a curve of best fit can be
used with curves such as those shown in Fig. 3 to obtain the average proba-
bility of exceedance.

Regardless of how the generalized T-year peak flows for an ungaged site
are obtained, the information cannot be used in computing flood risk until a
relation between stage and discharge has been established for the site for
which the peak flow estimates were made. Although such a relation can be
established by using the hydraulics of the channel downstream from the site,
the resulting discharge for a given stage will have a standard error of esti-
mate. From stage-discharge relations established by step backwater analy-
sis, for example, Bailey and Ray (1) found a standard error in estimated
discharge of 0.075 log units or about 18 %. Even if there were no time-
sampling error in the estimated T-year peak flows, this error in the stage-
discharge relation would cause bias in the flood risk. The amount of the bias
would be the same as that for an equivalent standard error in T-year peak
flows assuming the distribution of errors to be the same. For the usual con-
dition where there is error in the T-year peak flow and also in the stage-
discharge relation at an ungaged site, the two standard errors should be
combined by adding variances to obtain the proper standard error to use in
entering Table 3 or Fig, 3.

APPLICATION TO GAGED SITES

For gaged sites at which T-year peak flows are computed by fitting log-
Pearson Type III distribution curve to the statistics of a sample of annual
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peaks, the average exceedance probability depends on whether or not the skew
coefficient of the population is substituted for the sample skew coefficient and
on whether the bias has been removed from the standard deviation, If an av-
erage or generalized skew coefficient is used to determine % in Eq. 1 and if
the standard deviation is computed by Eq. 2, the average exceedance proba-
bility of the T-year peak flows thus estimated is as given in Table 2. If the
standard deviation is adjusted for bias, the average exceedance probability
would be as given in Table 3.

If the sample skew coefficient is used to define k in Eq. 1, the average ex-
ceedance probability of T-year peaks will be somewhat different than that
given in Tables 2 and 3. Although it is not the purpose of thispaper topropose
a procedure for evaluating the average exceedance probability of T-year
peaks computed using sample skew coefficients, an idea of this difference is
given in Table 5, which is based on computations using standard deviations
computed by Eq. 2.

TABLE 5.—EFFECT OF USING SAMPLE SKEW INSTEAD OF POPULATION SKEW TO
COMPUTE T-YEAR PEAK FLOWS

Adjustment to Values of Average Exceedance Probability
T N Shown in Table 2 for Indicated Skew Coefficient of Population

-1.0 -0.5 0.5 1.0 Average
10 10 -1.25 0 0.58 0.51 -0.04
10 50 -0.27 -0.01 0.17 0.23 0.03
50 10 -1.93 -0.12 1.14 1.37 0.12
50 50 -0.39 0 0.26 0.34 0.05
1,000 10 -0.77 0.62 1.18 1.30 0.58
1,000 50 0.47 0.27 0.15 0.17 0.26

Whether it would be better to use a generalized estimate of the skew co-
efficient of the populationin computing T-year peak flows from observed an-
nual peaks or to use the sample skew coefficient is outside the scope of this
paper. The main point in regard to flood risk at gaged sites is that 50-yr
flood peaks estimated from 10 annual peaks at each of many sites have flood
risks that average about twice as large as that given by the reciprocal of 50
regardless of the procedure used in computing the 50-yr peak flows.

CONCLUSIONS

Flood-frequency curves fitted mathematically to observed annual peak
flows or based on generalized estimates of T-year peaks at ungaged sites
give too small an estimate of flood risk. This bias in flood risk is due to the
inaccuracy inherent in all such curves. For ungaged sites the amount of the
bias can be estimated from relations between it and the standard error of the
estimated 7-year peaks if the population of annual peaks at the site is as-
sumed to follow a log-Pearson Type III distribution and if the logarithmic
standard deviation and skew coefficient of the population are assumed to be
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the same as for the estimated flood-frequency curve. For these sites the
standard error of the estimated 7-year peak flow should be combined with
the standard error in the estimated stage-discharge relation before the bias
in flood risk is appraised. For gaged sites where T-year peak flows are
estimated from short records of annual peaks, the amount of bias can be
estimated from the number of years of record if a generalized skew coeffi-
cient is used as being that of the population of annual peaks. The estimated
bias for gaged or for ungaged sites should be applied as an adjustment to the
exceedance probability obtained from a flood-frequency curve to define a
flood-risk curve, and the flood-risk curve should be used to compute the
annual premium required to balance expected flood damage at a large num-
ber of sites.

In view of the relation between bias and standard error, it is imperative
that the accuracy of all procedures used in deriving the data used in the eval-
uation of flood risk be appraised in terms of estimated standard error so that
the variances canbe added to obtain the standard error that should be used in
appraising flood risk.

The fact that the amount of bias in flood risk is independent of the standard
deviation of the population of annual peaks shows that 10 years of record at a
site with a large variability in annual peak flows is as good as 10 years of
record at a site with small variability even though the standard error of
estimated T-year peaks is greater. The same amount of additional record at
both sites would give the same reduction in flood risk and thus both sites
would have the same relation between flood risk and cost of collecting records
of flood peaks.
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APPENDIX II.—NOTATION

The following symbols are used in this paper:

n M

STISES

o

= coefficient of skew of annual peak flows or of their logarithms;

number of standard deviation units from sample mean;

= number of annual peak flows;
= average length of record, in years, at gaged sites;

accuracy in equivalent years of record for T-year peak flows at un-
gaged sites estimated from regression;

= probability of exceedance; P is average probability of exceedance;
= factor relating SEx to ¢ and N; equals SEx \/1—/0';
T T

standard error of estimated 7-year peak flow;

standard deviation of sample of annual peak discharge or of their
logarithms;

= recurrence interval, in years;
= discharge of annual peak;

mean of annual peak discharges;

T-year peak discharge, Xp is Xt estimated as X + ks;and

= gtandarddeviation of population of annual peak discharges or of their

logarithms.
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ABSTRACT: Flood damage computed from flood-frequency curves fitted
mathematically to observed annual peak flows or estimated by regression with basin
characteristics, is a biased estimator of flood risk. The inaccuracy inherent in any
flood-frequency curve increases the annual premium that would have to be charged to
break even over a large number of projects. For ungaged sites where the population of
annual peaks can be assumed to follow a log-Pearson Type III distribution, the true
risk is evaluated by relating it to the standard error of estimate of the regression used
to define the flood-frequency curve. In view of this relation between bias and error,
the accuracy of all procedures used in evaluating flood frequency should be appraised
in terms of standard error so that the proper flood risk can be obtained.
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BIAS IN COMPUTED FLOOD RISK?

Discussion by Bernard W. Gould

BERNARD W. GOULD.3—Sampling bias in flood damage risk estimation,
The authors have drawn attention to an interesting and important topic. How-
ever, the writer disagrees with the authors’ main conclusions; he is of the
opinion that sampling bias in flood damage estimation notonly is insignificant
in comparison with sampling errors, but also is of the opposite sign to that |
suggested by the authors in their paper. If this opinion is correct, the tables
given by the authors, and their recommended procedures to increase the value
of flood damage risk estimates, are misleading because they would not re-
move bias, but rather greatly increase the already existing small bias.

This opinion is based on a brief theoretical study and sampling experi-
ments which have been performed by the writer. The limited space available
for discussion does not permit presentation of full details of the argument,a
copy of which has been sent to the authors. A limited number of copies aré
available for distribution to interested readers. F-

Under the heading Bias in Flood Risk the authors describe a sampling X~ &
periment in which they appear to demonstrate that, onthe average, exceedancé j
values for samples are in excess of the true exceedance values, as given by
the population parameters, This would seem to establish that by using p3-
rameters estimated from samples the probable damage would be, on the .
average, overestimated. R

However, the authors then state that exceedance values estimated fr?m_ |
samples should be further increased to remove bias in flood damage I'#*
calculations. X

Inorder to assess the bias in estimated flood damage risk, it is necessaﬂ; i
to examine that particular statistic, and not others, such as exceedant®
values. i

There are two main sources of bias (or systematic error, as distinct frf)ﬂ:
random error) in flood damage risk calculations., First, the use of finite m;.j
crements of stage introduces computational errors; second, the prc:bfel-ble er_';
papét

2 March, 1972, by Clayton H, Hardison and Marshall E. Jennings (Proc.

8766).
3 Assoc. Prof. in Civ. Engrg., Univ. of New South Wales, Kensington, New SO

Wales, Australia.
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rors of sampling may cause the statistic to have an inherent bias.

The writer has investigated the degree of error associated with the siza
of increment used in calculation. Fig. 4 shows the superiority of the Simyp.
son’s rule calculation over the product of midvalues calculation, and indj.
cates that an increment size of 0.3 times the standard deviation is likely tq
give a sufficient degree of accuracy.

The writer has estimated that the theoretically expected bias is approxi.
mately (25/N) % (with the sample estimate of risk being, on the average
greater than the true value) when the stage distribution is normal, the,
damage-stage relationship is linear, and N is the number of years of records
included in a sample.

In the sampling experiments, repeated samples of a nominated size (e.g,,
10, 15, 20, 30, and 50—in turn) were drawn at random from a normal popula-

80 o8
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EXPERIMENTAL VALUES OF RISK ESTIMATES
BIAS

tion having a mean of 100 units, and a standard deviation of 10 units. FOF
each sample, the sample mean and sample standard deviation were caled®
lated, and, from these, the corresponding values of annual flood damage T
were obtained by a Simpson’s rule computation.

The summarized results showing the mean values, and average maximih
and minimum values are shown in Fig. 5. Fig. 6 shows the theoretical 0%
experimental values of bias for different sample sizes. The estimation &
bias from the sampling experiment confirms the theoretical study. ]

As a matter of interest, Fig. 7 shows the coefficient of variation of rlsk:
estimates made from random samples of various sizes for both 2 1
damage-stage function and a parabolic damage-stage function. i

Compared with these estimated sampling errors, the bias of estimaté =
insignificant, and is of the opposite sign to bias suggested by the authors-

ineal’
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Bias ixn Computep Froop Risk?

Closure by Clayton H. Hardison,* F. ASCE
and Marshall E. Jennings, A. M. ASCE
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Geological Survey’s Water Supply Paper series. These Parts cover most of
the United States east of the Mississippi River. A 40-yr period of record for
each station was used. The record for the first 20 yr was used to compute
a 50-yr peak discharge by the log-Pearson Type III method. This discharge
was compared with the annual peaks in the second 20 yr to determine the
number of exceedances. Then the procedure was repeated with the second
20 yr being used to define a 50-yr peak for use in counting the exceedances
in the first 20 yr. The sums of the exceedances thus determined for each of
the stations in each part are shown in the next to the last column of Table
6, and the corresponding percentages of the total years are shown in the last
column.

The fact that the exceedance percentages shown in the last column of Table
6 average 3.95% instead of the 2.0% that would be obtained from the reciprocal
of the 50-yr recurrence interval is evidence that the risk is considerably larger
than that given by a flood-frequency curve. In fact, the values shown in Table

TABLE 6.—Exceedances of 50-yr Peak Discharges by Split-Sampling

- Exceedaﬁces B

Number of Total As a

WSP Part stations years Number percentage
(1) (2) (3) (4) e 7(5)_

1 64 2,560 102 3.98

2 24 960 46 4.79

3 49 1,960 68 3.47

4 20 800 32 4.00
Total 157 6,280 248 3.95 -

Note: The 50-yr peaks were computed from the statistics of 20 annual peaks using
the logarithmic skew coefficient of each sample. The logarithmic skew coefficients average
about 0.16.

2 represent the minimum amount of bias as they are based on T-year peaks
computed using a known skew coefficient. When a skew coefficient based on
each sample of annual peaks is used, as it was in the split-sampling experiment,
a larger bias is obtained, as evidenced by the fact that the 3.95% from Table
6 for an average skew coefficient of 0.16 is about one percentage point larger
than the value obtained from Table 2. This additional bias is due to the larger
standard error introduced by the error in estimating the skew coefficient. .

The writers reiterate that bias in flood risk as defined by them is due primarily
to the inaccuracy inherent in any estimate of a T-year peak. The fact that
the standard deviation of small samples tends to be too small by about 25/ N )%
adds a small amount to the bias in flood risk associated with inaccuracy.

In conclusion, the writers urge that the existence of a sizable bias in floo_d
risk be recognized and that appropriate allowance be made in the economi®
design of flood related projects.





