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Abstract.

In fitting a theoretical frequency distribution to a set of data, a problem arises

if the series contains a number of zero values, as may occur in annual flood peak data for
small, arid-region streams. The problem is twofold: first, commonly used distributions do not
fit such a set of data; second, if a logarithmic transformation of the data is being used,
logarithms of zero flows are not usable in a computation. To overcome the difficulties, a
theorem of conditional probability is used. The probability of occurrence of a nonzero peak is
combined with the conditional probability of exceeding a given flood magnitude, given that
a nonzero peak has occurred. The method has been found useful also for fitting flood series
in which information of peak annual floods below a specific stage is lacking.

The use of the log-Pearson Type III distribu-
tion has recently been recommended for fitting
flood-frequency data by the Water Resources
Council [1967]. In fitting the log-Pearson Type
III flood distribution, or any other fitted dis-
tribution, the problem arises of how to handle
stations with some zero events. Such events
occur in arid or semiarid regions, particularly
on small streams. One difficulty is that the log-
arithm of zero is minus infinity, and this makes
a solution impossible. Aunother difficulty is that
none of the commonly used theoretical proba-
bility distributions can fit a set of data part of
which can be represented by a curve and part
by a straight line of constant value. This report
describes a method for solving the problem of
zero peaks. It may also be used to obtain a
frequency curve for stations where small peaks
are not recorded; this may happen where a
crest-stage gage has a lower limit of stage that
is not exceeded during some years. The result
of the method is a frequency curve with a con-
tinuous frequency segment and a discrete or
mass probability segment. The technique is ob-
jective and, by comparison with the original
data, appears to yield good results throughout
the frequency range. Beard [1962], to correct
for the effect of abnormal dry years, suggests
ignoring lower flows and fitting a frequency
curve to only the upper half of the ranked
data. In the method proposed here, none of the
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data are ignored. The method is based on prob-
ability theory and may be explained by refer-
ence to Figure 1, which illustrates the sample
space of flood events.

The conditional probability of an event Y,
given that an event X has already occurred, as
found in most texts on probability theory, is

P(Y/X) = P(YX)/P(X) (D
Rearranging and noting from Figure 1 that
P(YX), the probability of the intersection of

Y and X, is equal to P(Y), equation 1 for the
case of flood events is

Qyp ~—— Qm
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Subset Y— Events above

a specific magnitude Qui
total of m events
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i Subset X— Events obove base Qs
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All events; total of N events

Fig. 1. Sample space of flood events.
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Frequency Curves

TABLE 1la. Annual Peaks for La Brea Creek
near Sisquoc, California

m
Flood Peak (Qn), Order No.,

cfs m N+4+1

3320 1 0.042

1970 2 0.083

1600 3 0.125
1430 4 0.167 -

1360 43 0.208

785 6 0.250

513 7 0.292

275 8 0.333

227 9 0.375

191 10 0.417

178 11 0.458

155 12 0.500

12 13 0.542

1.9 14 0.583

9 zero peaks 15 to 23

P(Y) = P(X)-P(Y/X) (2

For flood events P(X), the probability in any
year of an event that exceeds Q,, a base flood
level equal to zero or a level above which flood
magnitudes are recorded, is equal to n/N (see
Figure 1 for meaning of m, n, N, and Q.). In
flood terminology, equation 2 can be written as

P(annual flood > Qu} = %

- P{annual flood > Q,./annual flood > Q;} (3)

The flood level Q.., where m = 1, 2 ... nis the
order number of the arrayed flood magnitudes,
is reduced in steps toward Q. and eventually
equals Q, as selected flood levels and their as-
sociated probabilities are determined. The prob-
ability P{annual flood > Q.} or plotting posi-
tion of Q.. is from Figure 1 equal to m/N. The
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Fig. 2. Log-Pearson Type III frequency curve
Brea Creek near Sisquoc, Calif. The
dashed curve is the frequency curve obtained
when 0.1 cfs is added to all flood peaks.

ratio m/N is based on observed events. Numer-
lcally, it is close to ‘the plotting position for-
mula m/(N + 1), which represents the ex-
pected probability of ranked events [Langbein,
1960], which is recommended for use in the
graphical plotting of individual flood events.
The latter formula may be used to assign prob-
abilities to the individual events in a flood se-
ries. After plotting these probabilities against
the flood magnitudes, a graphical frequency
curve may then be drawn based on these events.

If, however, it is desired to fit a theoretical
distribution such as the log-Pearson Type III
distribution to the flood series, the conditional
probabilities in equation 3 may be defined by
fitting a log-Pearson Type III distribution to
events greater than Q.. These probabilities mul-
tiplied by n/N are the probabilities of annual
floods greater than Q...

Table 1 lists the annual peaks for La Brea
Creek near Sisquoe, California. Because only 14

TABLE 1b. Log-Pearson Type III Results for Nonzero Peaks

Conditional
Probability, 0.90 0.50 -0.20 0.10 0.05 0.02 0.005
P(Y/X)
Qm in cfs 16.1 477 1720 2680 3530 4390 5230
P{annual flood > Q.} 0.548 0.304 0.122 0.061 0.030 0.012 0.0030

or P(Y)
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of the 23 annual peaks are greater than zero,
n/N = 14/23. The conditional probabilities as
shown in equation 3 and corresponding dis-
charges ., shown on the first two lincs of Ta-
ble 14 were taken directly from the computer
output sheet and are the results of a log-Pear-
son Type IIT fit using only non-zero events.
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These probabilities are multiplicd iy 14/23 ¢4
obtain the probabilities of an amisi! flood pe.
ing greater than @,, shown on linc 3 of Table
15.

To compare the fitted curve witli the orig.
nal data, the observed peaks listcd i Table 14
are arrayed by magnitude and ploticd in Figure
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Fig. 3. Log-Pearson Tvpe III frequency curves for the case of 0Qa equal zero. The Jashed
curves are the frequency curves obtained when 01 cfs is added ro all flood peaks.
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TABLE 2a. Annual Peaks for Antelope Creek
Tributary No. 2 near Harlowton, Montana

m
Flood Peak (Q.n), Order No., _
cfs m N +4+1
3230 1 0.083
922 2 0.167
820 3 0.250
190 4 0.334
a 130 5 0.417
80 6 0.500
f <50 T
35
f <25
f <25
a 20
a—about f—below recording level of gage

2 using the plotting position formula m/(N +
1), where m is the order number. The solid line
shown is the fitted curve.

Annual flood data from six additional gaging
stations with different numbers of zero peaks
were used to test the method. The results,
shown in Figure 3, are considered good.

Another way of treating zero events [Sub-
committee on Hydrology, 1966] is to add a
small discharge to all flood events and thus fit
a log-Pearson Type III curve to the data. This
method was tried for the stations analyzed by
adding 0.1 cfs to all flood events. The results
are shown as dashed curves in Figures 2 and 3
and, in general, indicate poorer fitting than by
the method proposed in this paper.

An example of a flood series with @, at a
level above zero is presented using data for a
crest-stage station in Montana. The annual
peak data and resulting frequency curve for
Antelope Creek tributary No. 2 near Harlowton,
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Fig. 4. Example of log-Pearson Type III fre-
quency curve for @Q» greater than zero.

Montana, are given in Tables 2a and 2b and
Figure 4. For this computation, @, was set at
50 cfs, since annual floods below this level were
not recorded.

In summary, the proposed procedure for pre-
paring a frequency curve using the log-Pearson
Type III method for an annual flood series hav-
ing some zero events or incomplete data is out-
lined in the following steps:

1. List annual flood events above Q. where
Q. is zero or something higher.

2. Fit a log-Pearson Type III curve to these
events, either by computer or by manual cal-
culations, and thus obtain discharge values cor-
responding to conditional probabilities through-
out the defined range.

3. Calculate n/N as the proportion of peaks
above @, and calculate P{annual flood > Q,}
using equation 3. For the case of Q, equal to
zero, plot P{ annual flood > @Q..} and corre-
sponding Q.. discharges on log probability paper

TABLE 2b. Log-Pearson Type 111 Results for Peaks Greater than 50 cfs
Conditional
Probability, 0.90 0.80 0.50 0.20 0.10 0.04
P(Y/X)
@m in cfs 72 123 378 1317 2620 5720
P{annual flood > Qn} 0.490 0.436 0.272 0.109 0.055 0.022

or P(Y)
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and draw a smooth curve. For the case of Q,
equal to some value greater than zero, plot n/N
at @, and P{annual flood > Q.} corresponding
to Q.. discharges on log probability paper and
draw a smooth curve terminating at Q, and ig-
noring discharges that may be less Q.. The pur-
pose of drawing curves in the case of either the
zero or the nonzero base is only to permit the
interpolating of flood magnitudes corresponding
to desired probabilities or recurrence intervals.
This interpolation could be done analytically if
desired, but the graphical interpolation is sim-
pler. '

4. Compare the fitted curve with the observed
data as shown in Figures 2—4.
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