National Research Program

Partial List of Abstracts, 2004

(Abstracts or links to abstracts; where noted, link to on-line article is provided.)

Baines, S.B., Fisher, N.S., Doblin, M.A., Cutter, G.A., Cutter, L.S., and Cole, B.E., 2004, Light dependence of selenium uptake by phytoplankton and implications for predicting selenium incorporation into food webs: Limnology and Oceanography, v. 49, p. 566-578.
Böhlke, J.K, Harvey, J.W., and Voytek, M.A., 2004, Reach-scale isotope tracer experiment to quantify denitrification and related processes in a nitrate-rich stream, midcontinent United States: Limnology and Oceanography, v. 49, p. 821-838.

We conducted an in-stream tracer experiment with Br and 15N-enriched NO3- to determine the rates of denitrification and related processes in a gaining NO3- -rich stream in an agricultural watershed in the upper Mississippi basin in September 2001. We determined reach-averaged rates of N fluxes and reactions from isotopic analyses of NO3-, NO2-, N2, and suspended particulate N in conjunction with other data in a 1.2-km reach by using a forward time-stepping numerical simulation that included groundwater discharge, denitrification, nitrification, assimilation, and air–water gas exchange with changing temperature. Denitrification was indicated by a systematic downstream increase in the d15N values of dissolved N2. The reach-averaged rate of denitrification of surface-water NO3- indicated by the isotope tracer was approximately 120 ± 20 µmol m-1 h-1 (corresponding to zero- and first-order rate constants of 0.63 µmol L-1 h-1 and 0.009 h-1, respectively). The overall rate of NO3- loss by processes other than denitrification (between 0 and about 200 µmol m-1 h-1) probably was less than the denitrification rate but had a large relative uncertainty because the NO3- load was large and was increasing through the reach. The rates of denitrification and other losses would have been sufficient to reduce the stream NO3- load substantially in the absence of NO3- sources, but the losses were more than offset by nitrification and groundwater NO3- inputs at a combined rate of about 500–700 µmol m-2 h-1. Despite the importance of denitrification, the overall mass fluxes of N2 were dominated by discharge of denitrified groundwater and air-water gas exchange in response to changing temperature, whereas the flux of N2 attributed to denitrification was relatively small. The in-stream isotope tracer experiment provided a sensitive direct reach-scale measurement of denitrification and related processes in a NO3- -rich stream where other mass-balance methods were not suitable because of insufficient sensitivity or offsetting sources and sinks. Despite the increasing NO3- load in the experimental reach, the isotope tracer data indicate that denitrification was a substantial permanent sink for N leaving this agricultural watershed during low-flow conditions.

Bowers, J.E., Turner, R.M., and Burgess, T.L., 2004, Temporal and spatial patterns in emergence and early survival of perennial plants in the Sonora Desert: Plant Ecology, v. 172, p. 107-119.

Seedling emergence and survival of 15 perennial species were studied for six years in a 557-m2 permanent plot at Tumamoc Hill, Arizona, USA, an ungrazed site in the northern Sonoran Desert. The minimum rain required for germination and emergence ranged from 17.5 to 35.6 mm. Few species emerged in every year of the study. First-year survival averaged across all 15 species was 3.7%; only 0.1% of seedlings lived as long as four years. The odds of survival in the first year improved with increased rain. About three times as many seedlings died from predation as desiccation. In 2-m2 subplots, mortality of three woody species in the first 30 days after emergence appeared to be independent of seedling density. Short-, moderate-, and long-lived species displayed distinct survival strategies. Long-lived species compensated for generally poor seedling survival by frequent germination and emergence. Moderate-lived species exhibited highly episodic germination and emergence, a potentially risky behavior that might have been offset to some extent by relatively good long-term survival. Short-lived species had the highest seedling survival. Because these species can bloom in their first year, good early survival meant that some individuals were able to reproduce before they died.

Dettinger, M.D., Cayan, D.R., Meyer, M.K., and Jeton, A.E., 2004, Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River basins, Sierra Nevada, California, 1900-2099: Climatic Change, v. 62, no. 1, p. 283-317.

Hydrologic responses of river basins in the Sierra Nevada of California to historical and future climate variations and changes are assessed by simulating daily streamflow and water-balance responses to simulated climate variations over a continuous 200-yr period. The coupled atmosphere-ocean-ice-land Parallel Climate Model provides the simulated climate histories, and existing hydrologic models of the Merced, Carson, and American Rivers are used to simulate the basin responses. The historical simulations yield stationary climate and hydrologic variations through the first part of the 20th century until about 1975 when temperatures begin to warm noticeably and when snowmelt and streamflow peaks begin to occur progressively earlier within the seasonal cycle. A future climate simulated with business-as-usual increases in greenhouse-gas and aerosol radiative forcings continues those recent trends through the 21st century with an attendant +2.5 °C warming and a hastening of snowmelt and streamflow within the seasonal cycle by almost a month. The various projected trends in the business-as-usual simulations become readily visible despite realistic simulated natural climatic and hydrologic variability by about 2025. In contrast to these changes that are mostly associated with streamflow timing, long-term average totals of streamflow and other hydrologic fluxes remain similar to the historical mean in all three simulations. A control simulation in which radiative forcings are held constant at 1995 levels for the 50 years following 1995 yields climate and streamflow timing conditions much like the 1980s and 1990s throughout its duration. The availability of continuous climate-change projection outputs and careful design of initial conditions and control experiments, like those utilized here, promise to improve the quality and usability of future climate-change impact assessments.

Kim, J., Dong, H., Seabaugh, J., Newell, S.W., and Eberl, D.D., 2004, Role of microbes in the smectite-to-illite reaction: Science, v. 203, p. 830-832.

Temperature, pressure, and time have been thought to control the smectite-to-illite (S-I) reaction, an important diagenetic process used for petroleum exploration. We demonstrated that microorganisms can promote the S-I reaction by dissolving smectite through reduction of structural Fe(III) at room temperature and 1atmosphere within 14 days. This reaction typically requires conditions of 300° to 350°C, 100 megapascals, and 4 to 5 months in the absence of microbial activity. These results challenge the conventional concept of the S-I reaction and of reaction kinetic models.

Knowles, N., and Cayan, D., 2004, Elevational dependence of projected hydrologic changes in the San Francisco Estuary and watershed: Climatic Change, v. 62, no. 1, p. 319-336.

California's primary hydrologic system, the San Francisco Estuary and its upstream watershed, is vulnerable to the regional hydrologic consequences of projected global climate change. Previous work has shown that a projected warming would result in a reduction of snowpack storage leading to higher winter and lower spring-summer streamflows and increased spring-summer salinities in the estuary. The present work shows that these hydrologic changes exhibit a strong dependence on elevation, with the greatest loss of snowpack volume in the 1300–2700 m elevation range. Exploiting hydrologic and estuarine modeling capabilities to trace water as it moves through the system reveals that the shift of water in mid-elevations of the Sacramento river basin from snowmelt to rainfall runoff is the dominant cause of projected changes in estuarine inflows and salinity. Additionally, although spring-summer losses of estuarine inflows are balanced by winter gains, the losses have a stronger influence on salinity since longer spring-summer residence times allow the inflow changes to accumulate in the estuary. The changes in inflows sourced in the Sacramento River basin in approximately the 1300–2200 m elevation range thereby lead to a net increase in estuarine salinity under the projected warming. Such changes would impact ecosystems throughout the watershed and threaten to contaminate much of California's freshwater supply.

Kohler, M., Curtis, G.P., Meece, D.E., and Davis, J.A., 2004, Methods for estimating adsorbed uranium(VI) and distribution coefficients of contaminated sediments: Environmental Science and Technology, v. 38, p. 240-247.

Assessing the quantity of U(VI) that participates in sorption/desorption processes in a contaminated aquifer is an important task when investigating U migration behavior. U-contaminated aquifer sediments were obtained from 16 different locations at a former U mill tailings site at Naturita, CO (U.S.A.) and were extracted with an artificial groundwater, a high pH sodium bicarbonate solution, hydroxylamine hydrochloride solution, and concentrated nitric acid. With an isotopic exchange method, both a KD value for the specific experimental conditions as well as the total exchangeable mass of U(VI) was determined. Except for one sample, KD values determined by isotopic exchange with U-contaminated sediments that were in equilibrium with atmospheric CO2 agreed within a factor of 2 with KD values predicted from a nonelectrostatic surface complexation model (NEM) developed from U(VI) adsorption experiments with uncontaminated sediments. The labile fraction of U(VI) and U extracted by the bicarbonate solution were highly correlated (r2 = 0.997), with a slope of 0.96 ± 0.01. The proximity of the slope to one suggests that both methods likely access the same reservoir of U(VI) associated with the sediments. The results indicate that the bicarbonate extraction method is useful for estimating the mass of labile U(VI) in sediments that do not contain U(IV). In-situ KD values calculated from the measured labile U(VI) and the dissolved U(VI) in the Naturita alluvial aquifer agreed within a factor of 3 with in-situ KD values predicted with the NEM and groundwater chemistry at each well.