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PREFACE

The MOC3D computer code simulates the transport of a single solute in ground
water that flows through porous media.  The model is a package for the U.S. Geological
Survey (USGS) MODFLOW ground-water model.  The new algorithm documented in this
report incorporates an implicit difference approximation in time of the dispersive transport
equation and is an alternative to the explicit difference approximation.  The code for this
algorithm is integrated with the code for MOC3D, forming Version 2.  This extension
offers significantly improved efficiency of MOC3D for transport problems that are
dominated by dispersion or diffusion relative to advection.

Version 2 of the MOC3D code, which includes the new extension, is available for
downloading over the Internet from a USGS software repository.  The repository is
accessible on the World Wide Web (WWW) from the USGS Water-Resources Information
Web page at URL http://water.usgs.gov/.  The URL for the public repository is:
http://water.usgs.gov/software/.  The public anonymous FTP site is on the Water-
Resources Information server (water.usgs.gov or 130.11.50.175) in the /pub/software
directory.  When this code is revised or updated in the future, new versions or releases will
be made available at these same sites.

Although extensive testing of MOC3D (Version 2) with the implicit dispersive
transport algorithm indicates that this model will yield reliable calculations for a wide
variety of field problems, the user is cautioned that the accuracy and efficiency of the model
can be affected significantly for certain combinations of parameter values and boundary
conditions.
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ABSTRACT

This report documents an extension to the U.S. Geological Survey MOC3D
transport model that incorporates an implicit-in-time difference approximation for the
dispersive transport equation, including source/sink terms.  The original MOC3D transport
model (Version 1) uses the method of characteristics to solve the transport equation on
the basis of the velocity field.  The original MOC3D solution algorithm incorporates
particle tracking to represent advective processes and an explicit finite-difference
formulation to calculate dispersive fluxes.  The new implicit procedure eliminates several
stability criteria required for the previous explicit formulation.  This allows much larger
transport time increments to be used in dispersion-dominated problems.  The decoupling
of advective and dispersive transport in MOC3D, however, is unchanged.  With the implicit
extension, the MOC3D model is upgraded to Version 2.

A description of the numerical method of the implicit dispersion calculation, the
data-input requirements and output options, and the results of simulator testing and
evaluation are presented.  Version 2 of MOC3D was evaluated for the same set of
problems used for verification of Version 1.  These test results indicate that the implicit
calculation of Version 2 matches the accuracy of Version 1, yet is more efficient than the
explicit calculation for transport problems that are characterized by a grid Peclet number
less than about 1.0.

INTRODUCTION

This report documents an extension to
the U.S. Geological Survey (USGS) MOC3D
transport model (Konikow and others, 1996)
that incorporates an implicit-in-time formulation
for the dispersion equation.  MOC3D simulates
three-dimensional solute transport in flowing
ground water for a single dissolved chemical
constituent and represents the processes of
advective transport, hydrodynamic dispersion
(including both mechanical dispersion and
diffusion), mixing (or dilution) from fluid
sources, and simple chemical reactions
(including linear sorption and decay).  The
MOC3D transport model uses the method of
characteristics to solve the transport equation
on the basis of the velocity field, which is
calculated from the head distribution
determined by MODFLOW-96 (Harbaugh and
McDonald, 1996a).

In its original implementation
(Konikow and Bredehoeft, 1978; Konikow

and others, 1996), the method of characteristics
uses particle tracking to represent advective
transport and explicit finite-difference methods
to calculate concentration changes over time
that result from dispersive fluxes and mixing
with solute from fluid sources.  Explicit
methods, however, have stability criteria
associated with them.  In some cases, these
criteria cause the model to take extremely small
time increments and thus become costly in
computational time, especially for three-
dimensional systems.  These cases are
characterized by relatively large dispersivity
values.

The new algorithm, documented in this
report, employs an implicit finite-difference
equation to calculate concentration changes
over time that results from dispersive fluxes
and mixing with fluid sources.  An iterative
equation solver is used to solve the
simultaneous difference equations, requiring
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five new parameters to be specified as input
data in addition to the parameters previously
needed for Version 1 of MOC3D.  The implicit
solution is unconditionally stable, which allows
larger time steps to be taken than with the
explicit solution.  Thus, it can be much less
costly in computation time for dispersion-
dominated problems than the original explicit
method.  The implicit algorithm code,
however, requires more computer memory than
the explicit method for a given size problem.

With the implicit extension, the
MOC3D model is upgraded to Version 2.
MOC3D is integrated with MODFLOW-96, the
U.S. Geological Survey’s (USGS) modular,
three-dimensional, finite-difference, ground-
water flow model (McDonald and Harbaugh,
1988; Harbaugh and McDonald, 1996a and
1996b).  MODFLOW solves the ground-water
flow equation and the reader is referred to the
documentation for that model and its
subsequent packages and modules for complete
details.  In this report it is assumed that the
reader is familiar with the MODFLOW family
of codes, including MOC3D (Version 1).

MOC3D (Version 2) is offered as a
general simulator that is applicable to a wide
range of field problems that involve solute
transport.  The user, however, should first
become aware of the assumptions and
limitations inherent in the simulator, as
described in this report and by Konikow and
others (1996).  There are some situations in
which the model results could be inaccurate or
model operation costly.  This report includes
guidelines for recognizing these situations and
avoiding such problems.

MOC3D is limited to fluid properties,
such as density and viscosity, that are uniform
and constant, and thus independent of
concentration values.  Within the finite-
difference grid used to solve the flow equation
in MODFLOW, the user is able to specify a
window or subgrid over which MOC3D will

solve the solute-transport equation.  MOC3D,
however, requires that the horizontal (row and
column) grid spacing be constant in each
direction within the subgrid.  The types of
reactions that are incorporated into MOC3D are
restricted to those that can be represented by a
first-order rate reaction, such as radioactive
decay, or by a retardation factor, such as
equilibrium, reversible, sorption-desorption
reactions that are governed by a linear isotherm
and constant distribution coefficient.

The computer program for the implicit
dispersive transport extension is written in
FORTRAN-77 and has been developed in a
modular style.   This documentation includes a
description of the implicit finite-difference
algorithm used to solve the dispersive flux and
fluid source terms of the solute-transport
equation in MOC3D (Version 2).  A complete
description of the data requirements, input
format specifications, program options, and
output formats is included.  This report must be
used in conjunction with the original MOC3D
documentation (Konikow and others, 1996),
which provides information on all previously
existing features of MOC3D, including details
on the method of characteristics, code
structure, and model use.

Acknowledgments.  The authors
appreciate the helpful model evaluation and
review comments provided by USGS
colleagues D.J. Goode and C.E. Heywood.

THEORETICAL BACKGROUND
AND GOVERNING EQUATIONS

The ground-water flow and interstitial
velocity equations used in MOC3D are given
by Konikow and others, 1996, and will not be
repeated here.  Solution to the flow equation
provides the interstitial velocity field, which
couples the solute-transport equation to the
ground-water flow equation.
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Governing Equation for Solute Transport

The solute-transport equation is that
presented in Konikow and others (1996,
equation 6):

∂(εC)

∂t
+

∂(ρbC )

∂t
+

∂
∂xi

εCVi( )

     −
∂

∂xi
εDij

∂C

∂x j

 

 
 

 

 
 − ′ C W∑

     + λ εC + ρbC ( ) = 0 ,

          

(1)

where C is volumetric concentration (mass of
solute per unit volume of fluid, ML-3), ρb is
the bulk density of the aquifer material (mass of
solids per unit volume of aquifer, ML-3), C  is
the mass concentration of solute sorbed on or
contained within the solid aquifer material
(mass of solute per unit mass of aquifer
material, MM-1), ε is the effective porosity
(dimensionless), V is a vector of interstitial
fluid velocity components (LT-1), D is a
second-rank tensor of dispersion coefficients
(L2T-1), W is a volumetric fluid sink (W<0) or
fluid source (W>0) rate per unit volume of
aquifer (T-1), ′ C  is the volumetric
concentration in the sink/source fluid (ML-3), λ
is the decay rate (T-1), t is time (T), and xi are
the Cartesian coordinates (L).

For the case of reversible, linear
equilibrium sorption, the form of the solute-
transport equation that is solved in Version 2 of
MOC3D is the same as that solved in Version
1:

 

∂C

∂t
+

Vi

Rf

∂C

∂x i
−

1

εR f

∂
∂xi

εDij
∂C

∂x j

 

 
 

 

 
 

     −
Σ W ′ C − C( )[ ]

εR f

+ λC = 0.      (2)

Review of Assumptions

As described by Konikow and others
(1996), a number of assumptions have been

made in the development of the governing
equations.  Following is a list of the main
assumptions for review:

1. Darcy's law is valid and hydraulic-head
gradients are the only significant
driving mechanism for fluid flow.

2. The hydraulic conductivity of the
aquifer system is constant with time.
Also, if the system is anisotropic, it is
assumed that the principal axes of the
hydraulic-conductivity tensor are
aligned with the coordinate system of
the grid, so that the cross-product terms
of the hydraulic-conductivity tensor are
eliminated.

3. Gradients of fluid density, viscosity,
and temperature do not affect the
velocity distribution.

4. No chemical reactions occur that affect
the fluid or aquifer properties.

5. The dispersivity coefficients are
constant with time, and the aquifer is
isotropic with respect to longitudinal
dispersivity.

As noted by Konikow and Bredehoeft
(1978), the nature of a specific field problem
may be such that not all of these underlying
assumptions are valid.  The degree to which
field conditions deviate from these assumptions
will affect the applicability and reliability of the
model for that problem.  If the deviation from a
particular assumption is significant, the
governing equations and the numerical
simulator may have to be modified to account
for the appropriate processes or factors.

NUMERICAL METHODS

The notation and conventions used in
this report and in the computer code to describe
the grid and to number the nodes are illustrated
in figures 1 and 2.  The indexing notation used
here is consistent with that used in the
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Figure 1.  Notation used to label rows, col-
umns, and nodes within one layer (k) of a
three-dimensional, block-centered, finite-
difference grid for MOC3D.

computer code for MODFLOW by McDonald
and Harbaugh (1988), although not the
notation used in some sections of their report.
Our indexing notation maintains conformity
between the text of this report and the
FORTRAN code in MOC3D, and the index
order corresponds to an x,y,z sequence.
However, our notation differs from that used in
some other ground-water models in that the x-
direction is indexed by “j” and increases from
left to right along a row to indicate the column
number.  Our use of ∆x and ∆y is synonymous
with the use of ∆r and ∆c, respectively, by
McDonald and Harbaugh (1988).  The y-
direction is indexed by “i” and increases from
the top of the grid to the bottom within a
column to indicate the row number.  Thus, in a
map view of any one horizontal layer, as
illustrated in figure 1, the node representing a
cell in the first row and first column of the grid
would lie in the upper left corner of the grid.

Figure 2.  Representative three-dimensional grid for
MOC3D illustrating notation for layers.

The z-direction represents layers and is indexed
by “k.”  As indicated in figure 2, the first layer
(k = 1) in a multilayer grid would be the top
(or highest elevation) layer.  The saturated
thickness of a cell (bj,i,k) is equivalent to ∆z.

Ground-Water Flow Equation

A numerical solution of the three-
dimensional ground-water flow equation is
obtained by the MODFLOW code using
implicit (backward-in-time) finite-difference
methods.  Successful use of MOC3D requires a
thorough familiarity with the use of
MODFLOW.  Comprehensive documentation
of MODFLOW is presented by McDonald and
Harbaugh (1988), Harbaugh and McDonald
(1996a and 1996b), and the various reports for
additional implemented packages and modules.

Average Interstitial Velocity

The solution of the transport equation
requires knowledge of the velocity (or specific
discharge) field.  Therefore, after the head
distribution has been calculated for a given time
step or steady-state flow condition, the specific
discharge across every face of each finite-
difference cell within the transport subgrid is
calculated using a finite-difference
approximation (see Konikow and others,
1996).
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The particle-tracking algorithm requires
that the seepage velocity at any point within a
cell be defined to compute advective transport.
It is calculated at points within a finite-
difference cell based on interpolated estimates
of specific discharge at those points divided by
the effective porosity of the cell.

Solute-Transport Equation

The mathematical properties of the
transport equation vary depending upon which
terms in the equation are dominant in a
particular system.  Where solute transport is
dominated by advection, as is common in many
field problems, the transport equation
resembles a hyperbolic type of equation
(similar to equations that describe the
propagation of a wave or of a shock front).  In
contrast, where a system is dominated by
dispersive and diffusive fluxes, such as might
occur where fluid velocities are relatively low
and aquifer dispersivities are relatively high,
the transport equation becomes more parabolic
in nature (similar to the transient ground-water
flow equation).  Because system properties and
fluid velocity may vary significantly, the
dominant process (and the mathematical
properties of the governing equation) may vary
from point to point and over time within the
domain of simulation.

Method of Characteristics

The approach of the method of
characteristics is not to solve equation 2 itself,
but rather to solve an equivalent system of three
ordinary differential equations and one partial
differential equation:

dx

dt
=

Vx

Rf
,                          (3)

dy

dt
=

V y

Rf
,                          (4)

dz

dt
=

Vz

R f
,                          (5)

dC
dt

= 1
εR f

∂
∂xi

εDij
∂C
∂x j

 

 
 

 

 
 

         +
Σ W ′ C − C( )[ ]

εR f
− λC.

         
(6)

Although the concentration in equation 6 is
now that of a parcel of fluid moving in space
with the retarded velocity (V/Rf), we retain the
same symbol, C, as a matter of notational
convenience.

Solutions to equations 3-5 yield the
characteristic curves [x = x(t), y = y(t), and
z = z(t)].  This is accomplished by introducing
a set of moving points (or reference particles)
that can be traced within the stationary
coordinates of a finite-difference grid.  Each
particle corresponds to one characteristic curve,
and values of x, y, and z are obtained as
functions of t for each characteristic (Garder
and others, 1964).  Each particle has an
associated concentration and moves through the
flow field by the flow velocity acting along its
trajectory.  For the algorithm documented in
this report, equation 6 is solved along the
characteristic curves for C(t) by using an
implicit finite-difference formulation in time.
Previously, equation 6 was solved by using an
explicit finite-difference formulation.

Along the characteristic curves, the
processes of advection, dispersion, mixing,
and reactions are occurring continuously and
simultaneously (Konikow and Bredehoeft,
1978).  Therefore, equations 3-6 should be
solved simultaneously, but for practical
reasons, they are solved sequentially.
Sequential solution follows the concept of the
method of fractional steps or operator splitting
presented by Yanenko (1971).  Sensitivity to
the sequence of solving the characteristic and
dispersive transport equations is minimized by
solving equation 6 using concentration
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gradients that are based on the average of the
concentrations at each node before and after
advection.  This effectively gives equal weight
to the concentration gradients before and after
advection when computing the solute flux due
to dispersion.  These averaged concentrations,
designated as C j,i ,k

∗ , are calculated as:

C j,i , k
* =

C j, i, k
n + Cj ,i, k

n + adv

2
,                    (7)

where C j,i , k
n + adv  is the concentration at the new

time level after advection alone.

Particle Tracking

Advection in flowing ground water is
simulated by particle tracking.  The other solute
transport terms—dispersion, sources, and
decay—are simulated by computing changes in
the concentration associated with each particle.
The concentration changes caused by
dispersion and fluid sources are computed on
the finite-difference grid, fixed in space,
whereas concentration changes caused by
decay are calculated directly on the moving
particles.  After the flow equation is solved for
a new time step, specific discharges are
recomputed on the basis of the new head
distribution, and the movement of particles
during this flow time step is based only on
these specific discharges.

Decay

Decay is simulated by reducing the
particle concentrations after advection
(Konikow and others, 1996).  A major
advantage of calculating the effect of decay
directly on the particles, rather than on the
nodal concentrations, is that this procedure
eliminates any numerical dispersion caused by
the interpolation between concentrations on the
moving particles and on the fixed grid (that is,
averaging from particle concentrations to nodal
concentrations and back to particle
concentrations).

This decay algorithm has no numerical
stability restrictions associated with it (Goode
and Konikow, 1989).  If the half-life is on the
order of or smaller than the transport time step,
however, some accuracy will be lost because of
the explicit decoupling of decay and other
transport processes.

When a solute subject to decay enters
the aquifer through a fluid source, it is assumed
that the fluid source contains the solute in the
concentration specified by ′ C .  The MOC3D
simulator allows decay to occur only within the
ground-water system, and not within the
source reservoir.  In other words, for a given
stress period, ′ C  remains constant in time.
Because decay is assumed to be continuous
over a time increment, however, the effective
value of ′ C  for a solute subject to decay is
adjusted by the factor e-λ∆t/2  to account for the
fact that solute injected into the aquifer at the
beginning of the time increment will have
already decayed by the end of the time
increment.  If the problem being simulated
requires that the solute in the source fluid itself
undergo decay, then the code will have to be
modified.

Node Concentrations

After all particles have been moved, the
concentration at each node is temporarily
assigned the average concentration of all
particles then located within the volume of that
cell; this average concentration is denoted as
C j,i ,k

n+adv .

C j,i ,k
adv =

Cp
dδ jp

t+1 = j , ip
t+1 = i, kp

t+1 = k( )
p=1

N

∑

δ jp
t+1 = j , ip

t +1 = i, kp
t+1 = k( )

p=1

N

∑
,

 

(8)

where the δ function is 1 if the particle is within
the cell j,i,k and is zero otherwise, and Cp

d  is
the decayed particle concentration at the end of
a transport time increment.  The time index is
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labeled “n+adv” because this temporarily
assigned average concentration represents
conditions at the new time level only with
respect to advective transport and decay.  The
effect of advective transport is to move particles
having different concentrations into and out of
each cell.

Finite-Difference Approximations

The dispersive transport equation along
a characteristic curve, equation 6 without the
decay term, is discretized in space using finite-
difference approximations.  The rate of change
in concentration due to dispersion and sources
can be written:

dC

dt
 
 

 
 

j, i,k
=

1

R f( )
k

εb( ) j ,i,k
t+1

∆x−1 εbD1m
∂C

∂xm

 
 
  

 
 

j+1/2,i ,k

*

− εbD1m
∂C

∂xm

 
 
  

 
 

j−1/2,i ,k

* 

 
 

 

 
 

 
 
 

+∆y−1 εbD2m
∂C

∂xm

 
 
  

 
 

j , i+1/2,k

*

− εbD2m
∂C

∂xm

 
 
  

 
 

j ,i−1/2,k

* 

 
 

 

 
 

+ εD3m
∂C
∂xm

 
 
  

 
 

j ,i,k+1/2

*

− εD3m
∂C
∂xm

 
 
  

 
 

j , i,k−1/2

* 

 
 

 

 
 + Wj,i,k ′ C j ,i,k − Cj ,i,k

*( )[ ]
W >0
∑

 
 
 
, 

  

 (9)

where subscript m is a summation index for the
dispersion term.  The j,i,k subscripts in
equation 9 denote the spatial finite-difference
grid indexing, as discussed previously in the
section “Numerical Methods.”  Equation 9 is
the dispersive transport equation applied to the
fixed mesh that advances the numerical solution
to the final concentrations, Cn+1, at the end of
the time increment.  The components of the
dispersive flux in each direction across cell
faces are calculated using finite-difference
approximations that are centered-in-space.

To complete the formulation of the
finite-difference equation represented by
equation 9, we must approximate the time
derivative of concentration.  We use the
concept of the method of fractional steps
(Yanenko, 1971) to implement a sequential
solution to equations 3-6.  Summarizing the
approach, as described in more detail by
Konikow and others (1996), advective
transport is represented by particle tracking.
Concentration changes caused by dispersive
fluxes and fluid sources are calculated using
concentration gradients in equation 9 that at any

point in space are the average of (1) the
concentration gradients at the start of the time
increment (C j, i,k

n ) and (2) the concentration
gradients computed after advection of particles
(C j, i,k

n+ adv), as denoted in equation 7.  Therefore,

the time derivative on the left side of equation 9
is approximated by the general finite difference
for a fractional step (Yanenko, 1971, p.23):

dC

dt
 
 

 
 

j, i,k
≈

Cn+1 − Cadv

tn+1 − t n  

               = θF(Cn+1 ) + (1− θ)F(C*),   (10)

where tn  is the time at level n (that is, the
beginning of a time increment, ∆t), θ  is the
time difference weighting factor, and F is the
right-hand side of equation 9.  The superscript
“*” indicates that the terms depend on the
average of the concentration at the old time
level and the concentration at the new time level
after advection and decay (see equation 7).
Equation 10 is not a classical difference
equation because it depends on intermediate
concentrations, not just values at the beginning
and end of the time step.  Setting the time
weighting factor, θ, to 1 gives a fully implicit
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or backwards-in-time (BT) difference equation.
Setting the time weighting factor to 0.5 gives a
difference equation similar to Crank-Nicolson
or centered-in-time (CT).

The time truncation error associated
with centered-in-time differencing is on the
order of (∆t)2; the error associated with
backwards-in-time differencing is on the order
of ∆t.  For typically small values of ∆t, the
truncation error for CT will be smaller than that
for BT.  However, CT differencing has the
potential for introducing oscillations into the
numerical solution.  See Kipp (1987, p. 112-

114) for additional details about the numerical
properties of alternative finite-difference
formulations.

The next step is to express the
difference equation in residual form by writing:

Cn+1 = Cadv + ∆C ,                  (11)

where ∆C  is the change in C over a time
increment (∆t) due to dispersive transport and
sources.  Equation 11 is inserted into equation
10, yielding the finite-difference approximation
to equation 9 for an interior node, j,i,k:

∆C = ∆t θ[ TSxx j+1/2 ,i ,k( ) ∆C j +1,i,k − ∆C j, i,k( ) −θTSxx j−1 / 2 ,i ,k( ) ∆C j ,i ,k −∆C j−1, i,k( )
+θ TSyy( j,i +1/2 ,k ) ∆C j ,i +1,k − ∆Cj , i,k( ) −θ TSyy ( j,i−1/2 ,k ) ∆C j, i,k − ∆C j ,i−1,k( )
+θTSzz( j ,i ,k+1 / 2 ) ∆C j,i,k+1 − ∆C j,i,k( ) − θTSzz( j ,i,k−1 / 2 ) ∆C j ,i ,k − ∆C j,i,k−1( )
+θTSxx j+1 / 2 ,i ,k( ) C j +1,i ,k

* − C j ,i,k
*( ) − θTSxx j −1 / 2 , i,k( ) C j ,i ,k

* − C j −1,i ,k
*( )

+θ TSyy( j ,i +1/2 ,k ) Cj, i+1,k
* − C j, i,k

*( ) −θ TSyy ( j, i−1 / 2 , k ) C j, i,k
* − C j ,i −1,k

*( )
+θTSzz ( j,i,k+1 / 2 ) C j , i,k+1

* − C j ,i,k
*( ) − θTSzz( j , i,k−1 / 2 ) C j, i,k

* − C j ,i ,k−1
*( )

+(1−θ )TSxx( j+1 / 2 , i,k ) C j+1,i,k
* − C j ,i ,k

*( ) − (1−θ )TSxx ( j−1 / 2 ,i,k ) Cj ,i ,k
* − C j−1,i,k

*( )
+(1−θ )TSyy ( j,i+1 / 2 ,k ) C j ,i+1,k

* − C j ,i,k
*( ) − (1−θ )TSyy( j,i−1/2 ,k) C j , i,k

* − C j,i−1,k
*( )

+(1−θ )TSzz ( j,i,k+1 / 2 ) C j ,i,k+1
* − C j ,i,k

*( ) − (1− θ)TSzz( j,i ,k−1 / 2 ) Cj, i,k
* − C j,i ,k−1

*( )
+TSxy ( j+1 / 2, i,k ) C j+1,i +1,k

* + C j,i +1,k
* − C j+1,i−1,k

* − C j ,i−1,k
*( )

+ ˜ T Sxz( j+1 / 2 ,i ,k ) Cj +1,i ,k+1
* − Cj+1,i,k−1

*( ) + ˆ T Sxz ( j+1 / 2, i ,k ) C j ,i,k+1
* − C j ,i,k−1

*( )
−TSxy( j −1/2 , i,k ) Cj, i+1,k

* + Cj−1,i+1,k
* − C j, i−1,k

* − Cj −1,i−1,k
*( )

− ˜ T Sxz( j−1 / 2 ,i,k) C j,i ,k+1
* − C j,i ,k−1

*( ) − ˆ T Sxz( j−1 / 2 ,i,k ) C j−1, i,k+1
* − C j −1,i,k−1

*( )
+TSyx ( j, i+1 / 2 ,k ) C j+1,i+1,k

* + C j, i+1,k
∗ − C j+1, i−1,k

∗ − C j , i−1,k
∗( )

+ ˜ T Syz( j,i +1/2 ,k) C j , i+1,k+1
* − Cj ,i+1,k −1

*( ) + ˆ T Syz ( j, i+1 / 2 ,k ) C j,i,k +1
* − C j, i,k−1

*( )
−TSyx( j , i−1 / 2,k ) C j ,i+1,k

* + C j−1,i+1,k
* − C j+1,i −1,k

∗ − C j ,i −1,k
*( )
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− ˜ T Syz( j,i −1/2 ,k ) Cj , i,k+1
* − C j ,i,k−1

*( ) − ˆ T Syz( j,i−1 / 2 ,k ) C j−1,i,k+1
* − C j −1,i,k−1

*( )
+TSzx ( j, i,k+ 1 / 2 ) Cj+1,i+1,k

* + C j ,i+1,k
∗ − C j+1,i−1,k

* − C j,i−1,k
∗( )

+TSzy( j ,i ,k+1/2 ) C j, i+1,k+1
* − Cj , i+1,k−1

* + C j,i ,k+1
* − C j, i ,k−1

*( )
−TSzx ( j ,i,k−1 / 2 ) Cj, i+1,k

* + Cj−1,i+1,k
* − Cj +1,i−1,k

∗ − C j,i−1,k
*( )

−TSzy( j ,i ,k−1/2 ) C j,i ,k+1
* − C j,i ,k−1

* + C j−1, i,k+1
* − C j−1,i,k −1

*( )
−θ Wj,i,k ∆C j,i ,k( )

W >0
∑ + Wj ,i ,k ′ C ( )

W>0
∑ − Wj , i,k

W>0
∑ C∗( )]  ,

                

(12)

where

TSxx ( j+ 1 / 2 ,i,k ) =
1

R f ,k εb( )
j, i,k

εbDxx( ) j+1 / 2 ,i ,k

∆x2

 
 
 

 
 
 

 ,

TSxy ( j+1 / 2, i,k ) =
1

Rf ,k εb( )
j, i,k

εbDxy( )
j+1 / 2 ,i ,k

2∆x∆y

 
 
 

  

 
 
 

  
 ,

˜ T Sxz j +1/ 2, i,k( ) =
1

R f ,k εb( )
j, i,k

εbDxz( )
j +1 / 2 , i,k

2∆x2B j+1,i,k

 
 
 

 
 
 

 ,

ˆ T Sxz j +1 / 2 ,i ,k( ) =
1

R f ,k εb( )
j, i,k

εbDxz( ) j +1 / 2 , i,k

2∆x2Bj, i,k

 
 
 

 
 
 

 ,

TSyy ( j, i+1 / 2 ,k ) = 1
R f ,k εb( )

j, i,k

εbDyy( )
j,i+ 1 / 2 ,k

∆y2

 
 
 

  

 
 
 

  
 ,

TSyx ( j, i+1 / 2 ,k ) = 1
R f ,k εb( )

j, i,k

εbDyx( )
j,i+ 1/2 ,k

2∆y∆x

 
 
 

  

 
 
 

  
 ,

˜ T Syz ( j , i+1 / 2,k ) = 1
R f ,k εb( )

j, i,k

εbDyz( )
j ,i+1/ 2,k

2∆y2B j, i+1,k

 
 
 

  

 
 
 

  
 ,

ˆ T Syz( j ,i+1 / 2 ,k) =
1

R f ,k εb( )
j,i ,k

εbDyz( )
j ,i+1/ 2,k

2∆y2B j, i ,k

 
 
 

  

 
 
 

  
 ,

TSzz ( j,i ,k+1 / 2 ) =
1

R f ,k εb( )
j,i ,k

εDzz( )
j,i,k+1 / 2

b j ,i,k+1/ 2

 
 
 

 
 
 

 ,

TSzx( j ,i,k+1 / 2 ) =
1

R f ,k εb( )
j,i ,k

εDzx( ) j ,i ,k+1/2

2∆x

 
 
 

 
 
 
,

TSzy( j,i ,k+1 / 2 ) =
1

R f ,k εb( )
j,i ,k

εDzy( )
j,i ,k+1 / 2

2∆y

 
 
 

  

 
 
 

  
,(13)

and where the TS  terms are the conductances
for solute transport (1/T), 2Bj,i,k ≡ bj,i,k +
1/2(bj,i,k-1 + bj,i,k+1) is the vertical distance
between nodes (j,i,k+1) and (j,i,k-1), and
εbDmn  are the dispersion terms (L3/T) given
by equations A5-A22 in Konikow and others
(1996).  Note that ˜ T  and ˆ T  are denoted
differently to help clarify that these
conductances are in the vertical direction, and
depend on different values of B.  Also note that

′ C  is constant over any time increment, hence
there is no time level index associated with it in
equation 12.

The coefficients TS  are evaluated at
time n, that is, at the beginning of the time step.
The time weighting factor, θ, can actually be
set to any value from 0.5 to 1.0 for an implicit
difference equation in time.

The source concentration, ′ C , is a
specified function of time and source location.
When the source flow rate is negative, so that
the node represents a fluid sink, the source
concentration, ′ C , becomes that of the cell.
Note that the source-sink terms must be
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summed individually because multiple terms
can exist at the same node and each fluid flux
specification can have a different concentration
associated with it.

Excluded cells in the simulation region
are handled by replacing equation 12 with a
trivial equation for the change in concentration
at these locations.  That is, the difference
equation for that cell becomes ∆C = 0.

Note that the cross-dispersive flux
terms have been evaluated explicitly in time
using the intermediate concentrations (C*) in
order to retain the 7-point stencil for the finite-
difference equation.  The 7-point stencil is
formed by the connection of a given node to its
six nearest neighbors (ahead, behind, in front,
in back, above, and below) in each of the three
coordinate directions.  This enables a
renumbering scheme, described below, to be
used to form a reduced matrix for the linear
equation solver.  Because the cross-dispersive
terms of equation 12 are explicit (not a function
of Cn+1), at least two iterations are necessary
for solving the dispersive transport equation at
each time step.  The number of iterations is
specified by the user with the value of NCXIT
in the input data set (see Appendix A).

The difference equations represented by
equation 12 form a set of simultaneous linear
equations of the form

A∆C = b                        (14)

where A is a symmetric, sparse matrix of the
coefficients of ∆C in equation 12, and b is the
known right-hand-side vector formed by the
terms containing C* in equation 12.  A
symmetric matrix means that the elements
above the diagonal are a mirror image reflection
of those below the diagonal.  A sparse matrix is
one where most (more than 75 percent) of the
elements are zero.  Before solving equation 14,
it is advantageous to transform to a reduced set
of equations.

Reduced Matrix Equation

Equation 14 is transformed to a reduced
matrix equation, also known as the Schur
complement (Axelsson, 1994), obtained by
reordering the nodes using a red-black
renumbering scheme (Price and Coats, 1974;
Aziz and Settari, 1979).  For red-black
renumbering, the nodes are renumbered in
sweeps along a primary coordinate direction
skipping every other node.  The secondary
direction is incremented at the end of each
primary sweep and the tertiary direction is
incremented at the end of a set of secondary
sweeps.  After the first sweep cycle is
complete, a second cycle is done to renumber
the remaining nodes in the same fashion.  In
two dimensions this renumbering is analogous
to numbering all the red squares of a
checkerboard followed by numbering all the
black squares.  The selection of the primary,
secondary, and tertiary sweep directions is up
to the user.  The convergence rate of the
conjugate-gradient solver, however, can be
markedly different under different reorderings.
There can be as much as a factor of two
between the minimum and maximum number
of iterations of the solver needed to converge to
a solution at a given time step depending on the
sequence of directions used for the
renumbering.

The red-black renumbering scheme
leads to a partitioned coefficient matrix, A, of
the form

A =
DR ABR

T

ABR D B

 

 
 

 

 
 ,                 (15)

where D R  and D B  are diagonal matrices.
Elimination in equation 14 yields the reduced
matrix equation

R∆CB = fB ,          (16)

where ∆CB  is the vector of changes in
concentration for the black nodes and fB is the
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right-hand-side vector for the black nodes.  The
reduced matrix, R, is given by

R = DB − A BRDR
−1ABR

T ,              (17)

and fB is given by

fB = bB − ABRD R
− 1bR .             (18)

The advantages to forming the reduced
matrix equation are (1) it contains only half the
number of unknown elements for ∆C, and (2)
it increases the convergence rate of the iterative
solver.  The disadvantage is that the R matrix
requires ten elements of storage per equation
rather than the four elements per equation
required by the A matrix.  After equation 16 is
solved for ∆CB, then ∆CR is easily obtained
from

∆CR = DR
−1[fR − ABR

T ∆CB] ,        (19)

where ∆CR  is the vector of changes in
concentration for the red nodes and fR is the
right-hand-side vector for the red nodes.

Matrix Equation Solver

An iterative solution algorithm for the
set of linear, symmetric, sparse-matrix
equations (represented by equation 16) has
been developed.  It is a conjugate-gradient
method with preconditioning based on
incomplete Cholesky (IC) factorization, as
described by Stoer and Bulirsch (1991) and
Axelsson (1994).  Incomplete Cholesky
factorization is a powerful preconditioning
technique for use with iterative methods applied
to sparse linear systems of equations (Meijerink
and Van der Vorst, 1977).  The preconditioned
system is

MR∆CB = MbB ,                   (20)

where M  is an approximate inverse of R.  For
incomplete Cholesky preconditioning,

M ≈ LDLT[ ]−1
,                    (21)

where L is the lower triangular factor of matrix
R; that is,

LDLT = R .                   (22)

Different orders of IC factorization can
be employed (Meijerink and Van der Vorst,
1981).  Order one means no fill-in is allowed
of any zero (null) element locations in the
original R matrix during the IC factorization.
Order one IC factorization, used here,
corresponds to method ICCG(1,1) of Meijerink
and Van der Vorst (1981).  Dupont and others
(1968) proposed a modified incomplete
factorization (MIC) with the requirement that
rowsum(M) = rowsum(R), where rowsum
(M) means the sum of the elements along a row
of matrix M.  This requirement is met by
adding any discarded elements from the IC
factorization to the diagonal element of the
corresponding row.  MIC preconditioning is
the method used in the present version of the
solver.

Choosing the Parameters for the
Iterative Equation Solver

As with any iterative solver, a
convergence criterion and maximum number of
iterations need to be specified.  In addition, the
red-black renumbering scheme has six possible
permutations of the renumbering sequence for
forming the reduced matrix.  Short trial
simulations of one or two time steps are
sufficient to find the optimum choice for fastest
convergence.  Actually, the six choices usually
group into three pairs of nearly equal iteration
counts.  

The tolerance for convergence of the
iterative solver sets the maximum acceptable
value for the Euclidean norm of the residual
vector.  The residual vector is defined as

r = bB − R∆CB  ,           (23)

and the Euclidean norm is defined as

|| r ||2 = ri
2

i=1

k

∑
 

 
  

 
 

1 /2

.                 (24)
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Actually, the norm of the residual is scaled to
the Euclidean norm of the initial residual
vector.  Thus,

r
r0

 
 
  

 
 =

r
b

 
 

 
 ≤ ε  ,                 (25)

where ε is the convergence tolerance.

 Experience with test problems has
shown that a convergence tolerance of 10-5 to
10-7 is necessary to obtain three or four digit
agreement with results of a direct solver.  No
algorithm is presently available to set this
tolerance based on the problem specifications.
For large problems, use of a direct solver is
impractical, therefore the user must experiment
with several values of the convergence
tolerance to determine the largest value that
provides agreement to the desired number of
digits with a more accurate solution obtained
using a smaller tolerance.  Finally, the iteration
limit prevents run away conditions when the
convergence rate becomes very slow.  Under
some conditions, the user may need to double
or triple the suggested limit of 100.  More than
a few hundred iterations, however, indicates
that adjustments probably need to be made in
the spatial or temporal discretization.

Accuracy Criteria

One advantage of solving the dispersion
equation implicitly is that this formulation is
unconditionally stable.  In contrast, the explicit
formulation requires the observance of stability
criteria, which limit the allowable time step
(Konikow and others, 1996).  Thus, the
implicit algorithm allows for significantly larger
time steps during the simulation.  It should be
noted that stability does not imply accuracy.
Solution accuracy decreases as the time step
increases.  A stable solution may be based on
such a large time step that its accuracy is very
poor.

When the implicit differencing is
implemented using a time weighting near 0.5, a

potential exists for stable oscillations to be
produced in the concentration solution.  Also,
for all amounts of implicit temporal
differencing, the use of a symmetric spatial
differencing for the cross-product terms of the
dispersion tensor gives a potential for
overshoot and undershoot in the calculated
concentration solution, particularly when the
velocity field is oblique to the axes of the grid.
Remedies for excessive overshoot and
undershoot are: (1) suppress the calculation of
the cross-dispersive flux terms, or (2) refine
the finite-difference mesh.  Option 1 requires
patching the source code and option 2 may lead
to excessively long simulation times.

An accuracy criterion incorporated in
both Version 1 and Version 2 of MOC3D
constrains the movement of particles during
each time step.  For reasons described by
Konikow and others (1996), an accurate
computation of concentration changes caused
by advective transport requires the maintenance
of a relatively uniformly spaced field of marker
particles that are moving along relatively
smooth and continuous pathlines.  Thus, a
restriction must be placed on the size of the
time step to ensure that the distance a particle
moves in the x-, y-, or z-directions does not
exceed some critical distance, related to the grid
spacing.  The simulator allows the user to
specify the value of this critical distance (named
CELDIS in the code and input instructions).
This translates into a limitation on the time-step
length.  If the time step used to solve the flow
equation exceeds the time limit, the time step
will be subdivided into an appropriate number
of equal-sized smaller time increments.

The original explicit algorithm in
MOC3D also includes a stability criterion
(Konikow and others, 1996, p. 24, equation
61) that constrains ∆t for the explicit finite-
difference solution of the term describing
concentration changes due to fluid sources.
This check assures that not more than one pore
volume of fluid is displaced by fluid injection
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(recharge) during any single time increment.  In
the implicit solution, one term of the finite-
difference approximation is at the n+1 time
level.  This relaxes the stability criterion by a
factor of two.  Therefore, in the code
implementing the implicit solution algorithms
for dispersive flux, we have incorporated an
automatic check of the magnitude of fluid
sources, and constrain the transport time
increment, if necessary, to assure that not more
than one pore volume is displaced in 0.5 ∆t.

Mass Balance

As described by Konikow and others
(1996), mass-balance calculations are
performed to help check the numerical accuracy
and precision of the solution.  One modification
of the previously described mass-balance
calculations has been implemented to assure
consistency with the new implicit algorithm.  In
calculating the cumulative mass flux out of the
system, the explicit procedure assumes that the
concentration associated with a fluid sink is
C j,i ,k

n , the node concentration at the beginning

of the time increment (see Konikow and others,
1996, equation 66).  If the implicit solver is
selected, however, the code will assume that
the concentration associated with a fluid sink is
the average concentration during the time

increment, C j,i ,k
n + Cj , i,k

n+1( ) 2.

Review of MOC3D Assumptions

The assumptions that have been
incorporated into Version 2 of the MOC3D
simulator are the same as for Version 1.  These
are relevant to both grid design and model
application.  Efficient and accurate application
of MOC3D requires the user to be aware of
these assumptions.  Therefore, the user should
review the description of these items as
presented by Konikow and others (1996).

COMPUTER PROGRAM

MOC3D Version 2 is implemented as a
package for MODFLOW.  MOC3D uses the
flow components calculated by MODFLOW to
compute velocities across each cell face in the
transport domain.  The computed velocities are
used in an interpolation scheme to move each
particle a distance and direction with time to
represent advection.  The transport mechanisms
of fluid sources, dispersion, and decay are
subsequently applied to the concentrations
associated with the particles.

A separate executable version of
MODFLOW, which is adapted to link with and
use the MOC3D package, must first be created
to run MOC3D Version 2 simulations.  The
MOC3D code is written in standard
FORTRAN-77, and it has been successfully
compiled and executed on multiple platforms,
including 486- and Pentium-based personal
computers, Macintosh personal computers, and
Data General and Silicon Graphics Unix
workstations.  FORTRAN compilers for each
of these platforms vary in their characteristics
and may require the use of certain options to
compile MOC3D successfully.  For instance,
the compiler should initialize all variables to
zero.  Depending on the size of the X-array
(defined by LENX in the MODFLOW source
code), options to enable the compiler to handle
large-array addressing may be needed.  Most
real variables in MOC3D are defined as single
precision variables in the FORTRAN code.  In
our experience, use of double-precision
definitions for most variables has not been
necessary.

Implementing MOC3D requires the use
of a separate file that contains file names similar
to the one used in MODFLOW.  The principal
MOC3D input data (such as subgrid
dimensions, hydraulic properties, and particle
information) are read from the main MOC3D
data file.  Other files are used for observation
wells, concentrations in recharge, and several
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input and output options.  Detailed input-data
requirements and instructions are presented in
Appendix A.

Version 2 also incorporates a new
option in MOC3D for the format of
concentration data written to a separate output
file.  This new option, which is highlighted in
Appendix A, allows data to be saved as a table
of values in which each line (or record)
contains the location of a node and the value of
concentration at that node.  This will facilitate
three-dimensional visualization of the output
because this new format is compatible with
many commercially available software
packages that enable rendering and viewing of
three-dimensional data sets.

The input data set used for the first test
problem (involving one-dimensional steady
flow) is included in Appendix B to provide the
reader with an illustrative example.

MOC3D output is routed to a main file,
separate from the MODFLOW main output file,

and optionally to additional output files.
Appendix C contains output from the example
input data set contained in Appendix B.

General Program Features

Because the model is based on the
assumption that the fluid properties (such as
density and viscosity) are constant and uniform
and independent of changes in concentration,
the head distribution and flow field are
independent of the solution to the solute-
transport equation.  Therefore, the flow and
transport equations can be solved sequentially,
rather than simultaneously.  Because transport
depends on fluid velocity, which is calculated
from the solution to the flow equation, the flow
equation must be solved first.  The sequence is
illustrated in figure 3 for a hypothetical problem
involving transient flow and three stress
periods.  The numbered sequence from 1

Figure 3.  Double time-line illustrating the sequence of progression in the MOC3D model
for solving the flow and transport equations.  This example is for transient flow and three
stress periods (NPER = 3) of durations PERLEN1, PERLEN2, and PERLEN3.   Each t ime
step for solving the flow equation (of duration DELT) is divided into one or more time
increments (of duration TIMV) for solving the transport equation; all particles are moved
once during each transport time increment.  For illustration purposes, the sequence of
solving the two equations is labeled for the first five time steps of the first stress period, and
the indices for counting time steps for flow and time increments for transport are labeled
for the fourth time step (from Konikow and others, 1996).
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through 16, which starts at the left edge of the
double time line, illustrates the order of
equation solution for the first five time steps of
the first stress period.  This figure illustrates
the nomenclature used for time parameters in
MODFLOW and MOC3D, as well as the
relation between them.

The implicit solution to the flow
equation in MODFLOW generally allows the
use of time steps of increasing length during a
given stress period.  The length of the first time
step for solving the flow equation is calculated
by MODFLOW on the basis of user-defined
values for the number of time steps (NSTP), a
time-step multiplier (TSMULT), and the length
of the stress period (PERLEN).  After the flow
equation is solved for the first time step (∆t1),
the MOC3D simulator compares the length of
this time step with the limitations imposed by
the accuracy criteria for solving the transport
equation.  If the limitations are exceeded,
MOC3D will subdivide the flow time step into
the minimum number of equal-sized time
increments that meet the criteria.  In the
example shown in figure 3, the first two time
steps for flow are sufficiently small so that the
transport equation can use a time increment of
the same duration as the flow time step (that is,
TIMV = DELT).  As this time-marching
sequence progresses and time-step lengths are
increased, the accuracy time-step constraints
are eventually exceeded.  Figure 3 shows that
after the second time step, the transport
equation had to be solved over shorter time
increments than the flow equation.

As mentioned previously, transport
may be simulated within a subgrid, which is a
“window” within the primary MODFLOW grid
used to simulate flow (see Konikow and
others, 1996, figure 9).  The grid dimensions
are limited only by the size of the “X” array
(see “Space Allocation” in the MODFLOW
documentation).

Program Segments

MOC3D Version 2 input and output
utilizes the standard MODFLOW array reading
and writing utilities as much as possible.
Konikow and others (1996) describe briefly
each of the subroutines in MOC3D that are
used for ten different categories of functions.
Following is a brief description of the
additional subroutines that are added to form
Version 2 of the MOC3D code.  In addition,
several existing MOC3D Version 1 subroutines
were modified to create Version 2.

New subroutines related to dispersion
calculations are listed in table 1.  Dispersion
coefficients are determined on cell faces.  To
improve efficiency, however, the dispersion
coefficients are lumped with the porosity,
thickness, and an appropriate grid dimension
factor of the cell into combined parameters
called “dispersion equation coefficients.”  For
example, the dispersion equation coefficient for
the j+1/2,i,k face in the column direction is

εbDxx( )
j +1/2, i,k

∆x
.

These combined coefficients are the ones that
are written to the output files.

MODFLOW source and sink packages
contain an option called CBCALLOCATE.
When used, the package will save the cell-by-
cell flow terms across all faces of every source
or sink cell.  MOC3D uses these fluid fluxes to
calculate solute flux to or from the source/sink
nodes.  Because these individual solute fluxes
are required to compute the solute mass
balance, the CBCALLOCATE option must
always be selected when using MOC3D.
Implicit calculations of concentration changes at
nodes caused by mixing with fluid sources are
controlled by the “SRC” subroutine in table 2.

Subroutines related to initialization of
the iterative solver for the implicit dispersion
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Table 1.  MOC3D subroutines controlling
implicit dispersion calculations

Subroutine Description Called from

LOADT Build solute con-
ductance factors
and load into one-
dimensional
arrays

MOC5LDAS

ASEMBL Assemble matrix
coefficients and
right hand side
vector for the dis-
persion equation

MOC5LDAS

RHSN Calculate explicit
terms for right
hand side of ma-
trix equation using
intermediate con-
centrations (C*)

MOC5MVOT

Table 2. MOC3D  subroutine controlling im-
plicit calculations relating to sources and sinks

Subroutine Description Called from

SRC5IAP Calculate changes
in concentration
due to implicit flux
terms at fluid
sources

MOC5MVOT

equation on a reduced matrix are listed in table
3.  Table 4 lists subroutines related to operation
of the iterative solver itself.

Also, the main MODFLOW routine in
MOC3D Version 2 has been shortened.  Many
of the calls to MOC3D-specific subroutines
were combined into new modules designed to
control the linkages between the flow and
transport routines.  This simply minimizes the
number of calls from the main MODFLOW
routine; there is no change in the functionality
of the overall code.  These changes are
beneficial to programmers, but are invisible to
model users.  The new transport-controlling
subroutines are listed in table 5.

Table 3.  MOC3D subroutines controlling
initialization of iterative solver for implicit
dispersion calculation

Subroutine Description Called from

INIT Initialize static data
for solver

MOC5RPCK

REORDR Perform red-black
reordering of nodes
based on the se-
lected permutation
of the coordinate
directions

INIT

LDCI Load array for
connection
indices based on
renumbered mesh

REORDR

LDCIR Load array for
connection
indices for
reduced matrix

REORDR

LDIND Load array with nat-
ural numbering for
selected permu-
tation of the co-
ordinate directions

REORDR

RBORD Map natural node
number into red-
black node number

REORDR

MODEL TESTING AND
EVALUATION

The MOC3D Version 2 simulator was
tested and evaluated by running the same suite
of test cases as was applied to MOC3D Version
1 by Konikow and others (1996).  This suite
included base results generated by analytical
solutions and by other numerical models.  It
spanned a range of conditions and problem
types so that the user will gain an appreciation
for both the strengths and weaknesses of this
particular code.  It should be noted that all test
cases involve steady flow conditions.
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Table 4.  MOC3D  subroutines and functions
for iterative solver on reduced matrix

Subroutine Description Called from

CGRIES Solve the matrix
equation using the
conjugate-gradient
method

MOC5MVOT

ABMULT Multiply black node
matrix times a
vector

CGRIES

ARMULT Multiply red node
matrix times a
vector

CGRIES

DBMULT Multiply black node
diagonal matrix
times a vector

CGRIES

FORMR Form reduced
matrix

CGRIES

LSOLV Solve lower triang-
ular black-node
matrix equation

CGRIES

RFACTM Factor reduced
matrix using mod-
ified incomplete
decomposition

CGRIES

USOLV Solve upper trian-
gular black-node
matrix equation

CGRIES

VPSV Calculate a vector
plus a scalar times
a vector

CGRIES

MTOIJK Return the index
(i,j,k) of the point
with natural index M

several

XIP Calculate a vector
inner product
(function)

several

One-Dimensional Flow

The first test case evaluates MOC3D for
a relatively simple system involving one-
dimensional solute transport in a finite-length
aquifer having a third-type source boundary
condition, as described by Konikow and others
(1996).  The numerical results are compared to
an analytical solution by Wexler (1992, p. 17).
The length of the system is 12 cm; other
parameters are summarized in table 6.  The
solute-transport equation was solved using

Table 5.  MOC3D subroutines controlling
overall solute-transport calculations

Subroutine Description Called from

MOC5RPCK Control calls for
reading and pre-
paring data and for
performing consist-
ency checks

main routine

MOC5INIT Control calls for
initializing
transport terms

main routine

MOC5VELO Control calls for
calculating fluxes
and printing
velocities

main routine

MOC5DISP Control calls for
calculating and
printing dispersion
coefficients

main routine

MOC5LDAS Load solute con-
ductance factors
and assemble
matrix for implicit
solution of the
dispersion equation

main routine

MOC5MVOT Control calls for
advective trans-
port (particle
tracking), total
concentration
change, solute
mass balance,
and solute output

main routine

MOC3D Version 2 on a 120-cell subgrid to
assure a constant velocity within the transport
domain and to allow an accurate match to the
boundary conditions of the analytical solution.

Two different values of dispersion
coefficients were evaluated in the first set of
tests.  The values were Dxx = 0.1 and 0.01
cm2/s, which are equivalent to αL = 1.0 and
0.1 cm, respectively.  Breakthrough curves
showing concentration changes over time at
three different distances from the boundary for
the lower dispersion case, as calculated with
both analytical and numerical solutions, are
compared in figure 4.  Numerical results using
the implicit dispersion solver were generated
using both the Crank-Nicolson and backward-
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Table 6. Parameters used in implicit
MOC3D  simulation of solute transport in a
one-dimensional, steady-state flow system

Parameter    Value

Txx = Tyy 0.01 cm2/s

ε 0.1

αL 0.1 cm

αTH = αTV 0.1 cm

PERLEN (length of stress period) 120 s

Vx 0.1 cm/s

Vy = Vz 0.0 cm/s

Initial concentration (C0) 0.0

Source concentration ( ′ C ) 1.0

Number of rows 1

Number of columns 122

Number of layers 1

DELR (∆x) 0.1 cm

DELC (∆y) 0.1 cm

Thickness (b) 1.0 cm

NPTPND (Initial number of
particles per cell)

3

CELDIS 0.5

INTRPL (Interpolation scheme) 2

FDTMTH 0.5

NXCIT 2

IDIR 1

EPSSLV 1 x 10-5

MAXIT 100

in-time approximations (specified by the value
of FDTMTH in the input data).  To improve
clarity, this plot only shows every fourth data
point for the numerical model results, except
for the curve for x = 0.05 cm, where every data
point is shown for times less than 10 seconds
and every tenth data point is shown for times
greater than 10 seconds.  Note that this distance
(x = 0.05) represents the first node downgradi-
ent from the source location.  There is a very
close match between the numerical and
analytical solutions.  At early times and short

Figure 4.  Numerical (implicit) and analytical
solutions at three different locations for solute
transport in a one-dimensional, steady flow
field.  Parameter values for this base case are
listed in table 6.

distances the numerical solution exhibits some
oscillation about the mean, which is related to
the discrete nature of the particles used to
represent the advection process.  This small
loss of precision, however, is not a cumulative
error, as it vanishes after moderate travel times
or distances.  For this case, the results obtained
using the explicit solution for dispersive fluxes
yield an almost identical numerical solution (see
Konikow and others, 1996, figure 18).  All
numerical solutions required 241 time
increments to solve the transport equation
because CELDIS was always the limiting
criteria.

The results for the higher dispersion
case are presented in figure 5.  For clarity, only
every tenth data point is shown for the
numerical solutions at x = 4.05 cm and x =
11.05 cm and for the solution at x = 0.05 cm
for times greater than 50 seconds (every data
point is shown for x = 0.05 cm for times less
than 50 seconds).  In general, the implicit
numerical results show a very close agreement
with the analytical solution.  The only notable
exception is for x = 0.05 cm (representing the
first node of the grid downstream from the
solute and fluid source) at early times, where
the backward-in-time solution shows
concentrations that are too high.  This
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Figure 5.  Numerical (implicit) and analytical
solutions at three different locations for solute
transport in a one-dimensional, steady flow field
for case of increased dispersivity (αL = 1.0 cm,
Dxx  = 0.1 cm2/s, and other parameters as
defined in table 6).

discrepancy, however, disappears for later
times and at longer distances.  The oscillations
and loss of precision at nodes very close to the
source are related to the discrete nature of the
particles used to represent advection, as
discussed by Konikow and others (1996, p.
43-44).  The magnitude of the oscillations
diminishes over time as dispersion reduces the
local concentration gradients.

This high-dispersion case illustrates the
relative computational efficiency of the implicit
formulation relative to the explicit formulation
using MOC3D.  In the latter case, the
dispersion coefficient imposed the limiting
stability criteria, and 2401 time increments (or
particle moves) were required to solve the
transport equation.  The implicit solver of
MOC3D (Version 2), however, required only
241 moves.  The explicit results are virtually
identical to the implicit Crank-Nicolson
concentrations.

Konikow and others (1996) also
present the results of these tests in the form of
concentration profiles in space at various times
and for various retardation factors (see their
figures 22 and 23).  Replication of these tests
using the implicit formulation yields almost as
good of a match to the analytical solution as,

for example, seen in figure 6 for the
nonreactive case.  In figure 6, only every
fourth data point is shown, except for t = 6 s,
where every data point is shown for distances
less than 1.5 cm.  For brevity, the comparisons
for reactive cases are not presented here.

Figure 6.  Numerical (implicit) and analytical
solutions for three different times for same
one-dimensional, steady flow, solute-transport
problem shown in figure 4.

The effect of decay is evaluated by
specifying the decay rate as λ = 0.01 s-1 for the
same low-dispersion, no sorption, problem as
defined for figure 4.  These results are
presented in figure 7, which shows excellent
agreement between the analytical and implicit
numerical solutions.  Only every fourth data
point is plotted in figure 7 for the numerical
results.  There is no discernible difference
between the Crank-Nicolson and backward-in-
time solutions, and both match the analytical
solution very closely.  Also, the implicit
solutions closely match the explicit solutions,
and both required the same number of time
increments (241) to solve the transport
equation.

Uniform, Three-Dimensional Flow

To evaluate and test MOC3D Version 2
with implicit dispersive transport calculations
for three-dimensional cases, we compared
numerical results with those of the analytical
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Figure 7.  Numerical (implicit) and analytical
solutions for four different times for solute
transport in a one-dimensional, steady flow field
for case with decay at rate of λ = 0.01 s-1.

solution developed by Wexler (1992) for the
case of three-dimensional solute transport from
a continuous point source in a steady, uniform
flow field in a homogeneous aquifer of infinite
extent.  Konikow and others (1996) note that
this evaluation primarily is a test of the
accuracy of the calculated dispersive flux in
three directions because the flow field is
aligned with the grid.  The problem and
analytical solution are described in detail by
Konikow and others (1996, p. 45-48); the
parameters and boundary conditions for this
test case are summarized in table 7.

The results of MOC3D are compared
graphically with those of the analytical solution
for the x-y plane passing through the point
source in figure 8.  Figure 8a shows the
concentrations in this plane as calculated using
the analytical solution and figure 8b shows the
same for the Crank-Nicolson implicit MOC3D
results (the backward-in-time results were
indistinguishable from those in figure 8b, so
are not reproduced here).  The results agree
very closely, although a slightly greater
distance of transport or spreading is evident in
the MOC3D results, both upstream as well as
downstream of the source.  Part of this
difference, however, can be explained simply
by the fact that the source is applied over a
larger area in the horizontal plane of the

Table 7. Parameters used in implicit MOC3D
simulation of transport from a continuous point
source in a three-dimensional, uniform, steady-
state flow system

  Parameter   Value

Txx = Tyy 0.0125 m2/day

ε 0.25

αL 0.6 m

αTH  0.03 m

αTV 0.006 m

PERLEN (length of stress period) 400 days

Vx 0.1 m/day

Vy = Vz 0.0 m/day

Initial concentration (C0) 0.0

Source concentration ( ′ C ) 2.5 × 106 g/m3

Q (at well) 1.0 × 10-6

m3/d

Source location row 8, column
1, layer 1

Number of rows 30

Number of columns 12

Number of layers 40

DELR (∆x) 3 m

DELC (∆y) 0.05 m

Thickness (b) 1.0 cm

NPTPND (Initial number of
particles per cell)

3

CELDIS 0.1

INTRPL (Interpolation scheme) 1

FDTMTH 0.5

NXCIT 2

IDIR 1

EPSSLV 1 x 10-5

MAXIT 100

MOC3D model, in which the length of the
source cell is 3 m in the direction parallel to
flow, whereas the source is represented as a
true point in the analytical solution.

The results obtained using the explicit
MOC3D formulation are presented by
Konikow and others (1996, figure 25b).  The
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Figure 8.  Concentration contours for (a) ana-
lytical and (b) numerical solutions in the
horizontal plane containing the solute source
(layer 1) for three-dimensional solute transport
in a uniform steady flow field.  Parameters are
defined in table 7.

explicit and implicit results are nearly identical.
The explicit solution method used 207 time
increments and the implicit solution methods
used only 134, so the implicit method is
somewhat more efficient for this case.

Konikow and others (1996) also
present comparisons for this case for vertical
planes parallel and perpendicular to the flow
direction.  The comparisons with the implicit
results are as close as in figure 8, and so for
brevity are not reproduced here.

Two-Dimensional Radial Flow

A radial flow and dispersion problem
was also used to compare the implicit
dispersive transport MOC3D solution to the
analytical solution given by Hsieh (1986) for a
finite-radius injection well in an infinite aquifer
of two dimensions.  The problem involves
flow from a single injection well; the velocities
vary in space and are inversely related to the
distance from the injection well.

The parameters for the problem are
summarized in table 8 and the analytical
solution and other details about this test case
are presented by Konikow and others (1996, p.
49-50).  The problem was again modeled using

Table 8.  Parameters used in implicit MOC3D
simulation of two-dimensional, steady-state,
radial flow case

  Parameter   Value

Txx = Tyy 3.6 m2/hour

ε 0.2

αL 10.0 m

αTH = αTV 10.0 m

PERLEN (length of stress period) 1000 hours

Q (at well) 56.25 m3/hour

Source concentration ( ′ C ) 1.0

Number of rows 30

Number of columns 30

Number of layers 1

DELR (∆x) = DELC (∆y) 10.0 m

Thickness (b) 10.0 m

NPTPND (Initial number of
particles per cell)

46

CELDIS 0.5

INTRPL (Interpolation scheme) 2

FDTMTH 1.0

NXCIT 2

IDIR 1

EPSSLV 1 x 10-5

MAXIT 100
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a grid having 30 cells in the x-direction and 30
cells in the y-direction, representing one
quadrant of the radial flow field (90 of 360
degrees).  Initial particle positions were defined
using the custom particle placement option as
described by Konikow and others (1996).  The
implicit solutions using Crank-Nicolson and
backward-in-time differencing were essentially
identical, and both matched the analytical
solution almost exactly (see Konikow and
others, 1996, figure 29).  The implicit
solutions of MOC3D also agree very closely
with the explicit dispersive transport solution of
MOC3D presented by Konikow and others
(1996).  The explicit solution, however,
required 596 time increments, whereas the
implicit solutions required only 282 time
increments.

Point Initial Condition in Uniform Flow

A problem including three-dimensional
solute transport from an instantaneous point
source, or Dirac initial condition, in a uniform
flow field was used as another test problem.
An analytical solution for an instantaneous
point source in a homogeneous infinite aquifer
is given by Wexler (1992, p. 42), who
presents the POINT3 code for a related case of
a continuous point source.  The POINT3 code
was modified to solve for the desired case of an
instantaneous point source.  Test problems
were designed to evaluate the numerical
solution for two cases—one in which flow is
parallel to the grid (in the x-direction) and one
in which flow occurs at 45 degrees to the x-
and y-axes.  This allows us to evaluate the
accuracy and sensitivity of the numerical
solution to the orientation of the flow relative to
the grid.  The assumptions and parameters for
this test case are summarized in table 9 and are
described in more detail by Konikow and
others (1996).

As described by Konikow and others
(1996), we specified for the test case of flow in

Table 9.  Parameters used in implicit MOC3D
simulation of three-dimensional transport from a
point source with flow in the x-direction and flow
at 45 degrees to x- and y-axes

  Parameter   Value

Txx = Tyy 10.0 m2/day

ε 0.1

αL 1.0 m

αTH = αTV 0.1 m

PERLEN (length of stress period) 90 days

Vx 1.0 m/day

Vy = Vz 0.0 m/day*

Initial concentration at source 1× 106

Source location x = 30 m,
y = 120 m,
z = 40 m**

Number of rows 24 and 72

Number of columns 24 and 72

Number of layers 24

DELR (∆x) 10.0 and 3.33 m

DELC (∆y) 10.0 and 3.33 m

Thickness (b) 10.0 m

NPTPND (Initial number of
particles per cell)

8

CELDIS 0.5

INTRPL (Interpolation scheme) 2

FDTMTH 0.5

NXCIT 2

IDIR 1

EPSSLV 1 x 10-7

MAXIT 100

*  For flow at 45 degrees to x- and y-axes, Vy = 1.0
m/day

** For flow at 45 degrees to x- and y-axes, the source
location is x = 30 m, y = 30 m, and z = 120 m.

the x-direction that Vx = 1.0 m/d, and Vy = Vz
= 0.0 m/d.  For flow at 45 degrees to x and y,
we specified Vx = Vy = 1.0 m/d, and Vz = 0.0
m/d.  For both cases, the distance the center of
mass of the plume travels in the x-direction is
the same for equal simulation times.  Note,
however, that the magnitude of velocity is
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Figure 9.  Concentration contours for (a) analytical and (b, c) numerical solutions for transport
of a point initial condition in uniform flow in the x-direction.  The z-component of flow is zero,
but there is dispersion in all three directions.  Contour values are the log of the concentrations.

higher in the latter case; therefore, there will be
more dispersion in that problem during an
equivalent time interval.

The results for both the analytical and
numerical solutions for the case in which flow
occurs only in the x-direction are shown in

figure 9.  The implicit dispersive transport
algorithms in MOC3D gave results for a 72 by
72 grid that are very close to those of the
analytical solution (figure 9a).  The numerical
results, however, do show some slight
spreading (or numerical dispersion) relative to
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the analytical solution in both the transverse
and longitudinal directions.  The Crank-
Nicolson solution (figure 9b) agrees very
closely with the backward-in-time solution
(figure 9c), except for a slightly longer tail on
the highest contour in the backward-in-time
solution.  The implicit MOC3D solutions also
closely match the explicit MOC3D results
presented by Konikow and others (1996,
figure 30d).  All numerical solutions took 56

time increments to solve the transport equation
and CELDIS was the limiting criteria in all
cases.

The results of the test problem for flow
at 45 degrees to the grid are shown in figure
10.  The analytical solution (figure 10a), which
provides the basis for the evaluation, was
solved on a 72× 72 grid, and the implicit
MOC3D solutions are shown for a 24× 24× 24
grid (figure 10b) and a 72× 72× 24 grid

Figure 10.  Concentration contours for (a) analytical and (b, c, d) numerical solutions for
transport of a point initial condition in uniform flow at 45 degrees to x and y.  Contour values
are the log of the concentrations.
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(figures 10c and 10d).  Unlike the previous
case (where flow is aligned with the grid), the
numerical results in figure 10 show a noticeable
difference in the shape of the plume relative to
the analytical solution.  The numerically
calculated “hourglass” shape is characteristic of
a grid-orientation effect and is caused primarily
by the off-diagonal (cross-product) terms of the
dispersion tensor.  When flow is oriented
parallel to the grid, or when longitudinal and
transverse dispersivities are equal, the cross-
product terms of the dispersion equation are
zero.  Because flow is at 45 degrees to the grid,
the cross-product dispersive flux terms are of
maximum size and negative concentrations are
most likely to occur.  The calculated
concentration field is less accurate in this case
largely because the standard differencing
scheme for the cross-product dispersive flux
terms can cause overshoot and undershoot of
concentrations.  If the base (or background) is
zero concentration, then undershoot will cause
negative concentrations.  The magnitude of this
overshoot and undershoot effect is reduced by
using a finer grid.  For this test problem, the
coarsest grid (figure 10b) exhibits too much
spreading relative to the analytical solution, and
the finer grid results in less numerical
dispersion (although the grid-orientation effect
is not eliminated).  The backward-in-time
solution (figure 10c) matches the analytical
solution more closely than does the Crank-
Nicolson solution (figure 10d), which
characteristically yields more oscillatory
behavior.  The implicit and explicit MOC3D
results all show a slight asymmetry in the shape
of the plume in the direction of flow (that is,
there is slightly less forward spreading
compared to backward spreading), although
this effect is less pronounced in the explicit
solution (see Konikow and others, 1996,
figure 31d).  This asymmetry is inconsistent
with symmetrical spreading found in the
analytical solution, and is caused by the
sequence in which the dispersive and advective
equations of the transport are solved.  Both

explicit and implicit solutions using a 72× 72
grid required 56 moves, so the simpler explicit
solution was more efficient for this particular
problem.  The solution on the 24× 24 grid
required only 19 moves.

Some small areas of negative
concentrations were calculated, but they do not
appear in figure 10 because they are removed
by using logarithmic-scale contouring.  To
show the extent of the areas of negative
concentration, we have replotted the results
illustrated in figures 10b-d in figure 11, using
two types of shading for all areas where the
relative concentration is less than -0.05 and less
than -10.0.  The coarse grid solution shows the
largest area in which negative concentrations
occur.  The use of a finer grid reduces the
magnitude of the problem, but does not
eliminate it.  We also tested the sensitivity of
the extent of negative concentrations to the size
of the transport time increment by reducing the
value of CELDIS to 0.1 (the base case used a
value of CELDIS = 0.5).  The area over which
negative concentrations occurred was only
slightly smaller.  The increase in execution
time, however, was considerable, so the very
small improvement does not appear to justify
the extra computational costs.

Constant Source in Nonuniform Flow

Burnett and Frind (1987) used a
numerical model to simulate a hypothetical
problem having a constant source of solute
over a finite area at the surface of an aquifer
having homogeneous properties, but
nonuniform boundary conditions, which result
in nonuniform flow.  Because an analytical
solution is not available for such a complex
system, we use their results for this test case as
a benchmark for comparison with the results of
applying the implicit algorithm in MOC3D, as
was also done by Konikow and others (1996).
Burnett and Frind (1987) used an alternating-
direction Galerkin finite-element technique to
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Figure 11.  Concentration contours showing calculated areas of negative concentrations for
same problem as represented in figure 10.

solve the flow and solute-transport equations in
both two and three dimensions.  Their model
also includes the capability to vary αT as a
function of coordinate direction, thereby
allowing this feature of MOC3D to be
evaluated.  A detailed description of the
problem geometry and of the parameters for the
numerical simulation using MOC3D are

presented by Konikow and others (1996, p.
55-60).

Cases of both two- and three-
dimensional transport were examined for this
problem.  The grids used in the implicit
MOC3D simulations were designed to match as
closely as possible the finite-element mesh used
by Burnett and Frind (1987).  However, some
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differences in discretization could not be
avoided because the finite-element method uses
a point-centered grid whereas MOC3D uses a
block-centered (or cell-centered) grid.  The
former allows specifications of values at nodes,
which can be placed directly on boundaries of
the model domain.  Nodes in MOC3D are
located at the centers of cells, and block-
centered nodes are always one-half of the grid
spacing away from the edge of the model
domain.  Among the small differences arising
from the alternative discretization schemes are
that, in the MOC3D grid, (1) the modeled
location of the 14.25 m long source area is
offset by 0.225 m towards the right, and (2)
the total length of the domain is 199.5 m.

The first analysis of this test case was a
two-dimensional model.  The input data values
for this analysis are listed in table 10.  The top
flow layer consisted of constant-head nodes
and the solute source.  We were able to
increase the efficiency of the simulation by
using a custom initial particle placement of only
three particles in each cell and still achieve
reasonably accurate results (see Konikow and
others, 1996, p. 56-57).

Results for the two-dimensional case
from the implicit calculation of the MOC3D
simulator closely match those of Burnett and
Frind (1987) (see figure 12).  The shape of the
plume is almost exactly the same for both
models.  In the implicit MOC3D results,
however, the contours extend slightly further
downgradient than those of Burnett and Frind
(1987).  This may be attributable in part to
small differences in the numerical treatment of
the source between the two models.  The
results using the backward-in-time
approximation and CELDIS = 0.5 are
presented in figure 12b.  This simulation
required 381 time increments, and the contours
exhibit some very small “wiggles.”  When this
was run using CELDIS = 1.0, the simulation
required only 191 time increments (effectively
doubling the average length of the time

Table 10.  Parameters used for implicit MOC3D
simulation of transport in a vertical plane from a
continuous point source in a nonuniform,
steady-state, two-dimensional flow system
(described by Burnett and Frind, 1987)

  Parameter   Value

K 1.0 m/day

ε 0.35

αL 3.0 m

αTH 0.10 m

αTV 0.01 m

PERLEN (length of stress
period)

12,000 days

Q (at well) 56.25 m3/hour

Source concentration ( ′ C ) 1.0

Number of rows 1

Number of columns1 141

Number of layers1 91

DELR (∆x) 1.425 m

DELC (∆y) 1.0 m

Thickness (b) 0.2222-0.2333 m

NPTPND (Initial number of
particles per cell)

3

CELDIS 0.5

INTRPL (Interpolation scheme) 1

FDTMTH 1.0

NXCIT 2

IDIR 1

EPSSLV 1 x 10-7

MAXIT 100

1 One row and layer were allocated to defining
boundary conditions, so concentrations calculated
in only 140 columns and 90 layers were used for
comparison.

increment), but the oscillations were noticeably
worse (although these results are not shown).
When this was run again using CELDIS = 0.1,
the simulation required 1901 time increments;
these results are presented in figure 12c.  The
oscillations are somewhat reduced relative to
those in figure 12b, and the furthest
downstream extent of the 0.9 and 0.3 contours
has shifted away from the center of mass.  The
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Figure 12. Two-dimensional simulation results for nonuniform-flow test case
showing plume positions as contours of relative concentration: (a) finite-element
model (modified from Burnett and Frind, 1987, figure 8a), and (b-d) MOC3D.
Contour interval is 0.2 relative concentration.

simulation was also run using an even smaller
value of CELDIS (0.05), which caused the
model to take 3,801 time increments.  But this
further reduction of the size of the time
increment had no discernible effect on the
results.  Similarly, when the simulations were
made using the Crank-Nicolson difference,
results were essentially identical to those
obtained using backward-in-time.  The results
obtained using the explicit MOC3D solution are
presented in figure 12d for comparison, and
they appear to be almost identical to those in
figure 12c.  The explicit simulation required
4,218 time increments (dispersion was the
limiting criteria).  For this problem, it is clear
that the implicit MOC3D algorithm is
significantly more efficient.  The implicit
results show some sensitivity to the length of
the time increment.  In general, the user should

evaluate this sensitivity for their particular
problem by making several runs in which the
value of CELDIS is varied.

As was done for the explicit MOC3D
tests (Konikow and others, 1996), the implicit
MOC3D grid was expanded to 15 rows having
∆y of 1.0 m for the three-dimensional analyses
of this case.  Figure 13 shows the transport
results in a vertical plane at the middle of the
plume for both models for the case in which
αTV  = 0.01 m and αTH = 0.1 m.  The implicit
MOC3D results for the vertical plane in the first
row are contoured in figure 13b (because of
symmetry, we only simulate half of the plume,
as explained by Konikow and others, 1996).
The MOC3D plume closely matches that
calculated by the finite-element model, although
the former shows slightly further downstream
migration of solute.  Konikow and others
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Figure 13.  Three-dimensional simulation results for nonuniform-flow test case in which
αTH = 0.1 m and αTV = 0.01 m: (a) finite-element model (modified from Burnett and Frind,
1987, figure 8c), and (b) implicit MOC3D solution using backward-in-time approximation
and CELDIS = 0.5.  Plume positions are represented by contours of relative concentration
in vertical plane of three-dimensional grid; contour interval is 0.2 relative concentration.

 (1996) note that there is a slight discrepancy in
the basis of comparison because concentrations
from MOC3D are evaluated at the center of the
block (1/2 of a cell width from the plane of
symmetry), whereas those from Burnett and
Frind (1987) are evaluated on the cell faces
(directly on the plane of symmetry).  The
Crank-Nicolson differencing scheme was also
used to compute the concentration distribution,
and those results matched those calculated
using the backward-in-time scheme (figure
13b) almost exactly.  These implicit solutions
required the same number of time increments
(381) as did the previously described two-
dimensional simulation.  The explicit solution

(Konikow and others, 1996, figure 36b),
however, required 4,218 time increments and
was clearly less efficient for achieving
equivalent accuracy.

Figure 14 shows the results for the case
in which the vertical transverse dispersivity is
increased by a factor of ten, so that αTH = αTV

= 0.1 m.  Overall, the implicit dispersive
transport MOC3D results (figure 14b) agree
very closely with those of Burnett and Frind
(1987) (figures 14a).  As before, the results
shown in figure 14b for the backward-in-time
approximation agree almost exactly with those
obtained using the Crank-Nicolson implicit
solution and the explicit MOC3D solution.

Figure 14.  Three-dimensional simulation results for nonuniform-flow test case in which
αTH = αTV = 0.1 m: (a) finite-element model (modified from Burnett and Frind, 1987, fig-
ure 9b), and (b) implicit MOC3D solution using backward-in-time approximation and
CELDIS = 0.5.  Plume positions are represented by contours of relative concentration in
vertical plane of three-dimensional grid; contour interval is 0.2 relative concentration.
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Relative Computational and Storage
Efficiency

Computer-memory storage requirements
for the implicit dispersive transport algorithm
of MOC3D are greater than those for the
explicit dispersive transport algorithm.  The
additional arrays required for using the implicit
algorithm routines can increase the memory
size requirement by as much as a factor of two
(see table 11).  Computational effort required
for the implicit algorithm, as opposed to the
explicit one, depends on the dominant transport
mechanism in the model--advection or disper-
sion.  The first test problem, which was a one-
dimensional, steady-state flow problem, was
run using various values of longitudinal
dispersivity with both the explicit and implicit
algorithms.  As presented in table 12, the
implicit algorithm is more efficient than the
explicit algorithm when the dispersivity is
greater than 0.1 (the grid spacing for this

problem is 0.1 cm).  This corresponds to a grid
Peclet number less than 1, where the grid
Peclet number is defined as,

 
Peg =

∆x

α
                        (26)

The computational effort required by the
implicit dispersive transport algorithm in the
MOC3D simulator is strongly dependent on the
size of the problem being solved, as determined
by the total number of nodes, total number of
particles, and total number of time increments,
but is independent of the value of the time
weighting factor (FDTMTH).  Analyses indicate
that the greatest computational effort, as meas-
ured by CPU time, is typically expended in the
particle tracking routines.  For a given problem,
computational effort may vary significantly as a
function of the characteristics of the particular
computer on which the simulation is performed,
and on which FORTRAN compiler and options
were used to generate the executable code.

Table 11.  Execution times and storage requirements for explicit and implicit solutions
using MOC3D (Version 2) for selected test cases.

Run Time in CPU-seconds "X" Array Elements Used1

        Problem Description Explicit Implicit Explicit  Implicit

One-Dimensional Steady
Flow2

7 10 11,457 17,400

Three-Dimensional Steady
Flow2

404 175 897,331 1,602,994

Two-Dimensional Radial
Flow and Dispersion2

930 445 455,737 499,900

Point Initial Condition in
Uniform Flow (flow at 45
degrees to grid) 2

210 310 1,728,673 2,406,112

Constant Source in
Nonuniform Flow (Two-
Dimensional)3

13,360 2,450 868,951 1,457,602

Constant Source in
Nonuniform Flow (Three-
Dimensional) 3

38,117 13,026 12,823,151 21,652,034

1 All data arrays and lists for MODFLOW, explicit and implicit MOC3D are allocated space in one array,
the MODFLOW "X" array.
2 Data General server with a Motorola 88110 chip running DG Unix 5.4R3.10 with 256MB RAM and a 45
MHz processor was used for this problem.  Green Hills Software FORTRAN-88000 was used to compile
MOC3D.
3 Silicon Graphics server with an R8000 chip running Irix 6.0.1 with 576MB RAM and a 90 MHz processor
was used for this problem.  MIPSpro F77 was used to compile MOC3D.
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Table 12.  Relative simulation times for explicit and implicit solu-
tions using MOC3D (Version 2) for varying values of longitudinal
dispersivity for the one-dimensional, steady-state flow problem.  

MOC3D

Longitudinal
Dispersivity (cm)

Peclet
Number Explicit Implicit

0.001 100.00   1.0* 2.1

0.010 10.00 1.0 2.1

0.020 5.00 1.0 2.1

0.100 1.00 1.0 2.1

0.200 0.50 1.6 1.8

0.500 0.20 3.7 1.7

1.000 0.10 7.1 1.7

10.000 0.01 67.20 1.6

* A value of 1.0 is equivalent to the base run, which took 6.9 cpu
seconds to execute on a Data General server with a Motorola 88110
chip running DG Unix 5.4R3.10 with 256 MB RAM and a 45MHz
processor.

To provide a qualitative indication of
these relations, we have run all of the sample
problems described in this report on a variety
of computers.  The costs, given as actual run
times for each problem on selected computer
systems, are presented in table 13.  The run
times are measured as CPU time in seconds.
As shown in table 13, the running times for a
given problem may vary by more than a factor
of ten, depending on which computer was
used. However, for the given test problems,
the cost was much more sensitive to the overall
size of the problem.  The CPU time on a given
computer varied by about four orders of
magnitude between the simplest one-
dimensional problem and the most complex
three-dimensional problem.  Thus, the model
user should be aware that simulation cost may
be a serious constraint on the size of problem
that is feasible to simulate.

CONCLUSIONS

The implicit dispersive transport
algorithm presented as an extension to the
MOC3D simulator can simulate the transient,

three-dimensional, transport of a solute subject
to decay and retardation. The numerical
methods used to solve the governing equations
have broad general capability and flexibility for
application to a wide range of hydrogeological
problems.

The accuracy and precision of the
numerical results of the implicit dispersive
transport algorithm were tested and evaluated
by comparison to analytical and numerical
solutions for the same set of test problems as
reported for the explicit algorithm in MOC3D
(Version 1).  These evaluation tests indicate
that both the explicit and implicit solution
algorithms in the MOC3D (Version 2) model
can successfully and accurately simulate three-
dimensional transport and dispersion of a
solute in flowing ground water.  An advantage
of the implicit algorithm is that it has less
computational cost for a given accuracy for
dispersion-dominated problems.  As such, it
complements the explicit dispersive transport
algorithm, which is more economical for
advection-dominated problems when time step
limitations on the particle transport calculation
become limiting.
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Table 13.  Comparison of MOC3D (Version 2) simulation times using implicit solver for selected
test cases on various computer platforms

Run Time in CPU-Seconds  

Problem
Description

Number of
Nodes

Number
of

Moves

Maximum
Number of
Particles

Silicon
Graphics1

Data
General
Server2

PC
(133 MHz,
Pentium)3

Macintosh
PowerPC
(7300/200)4

One-Dimensional
Steady Flow

120 241 360 1.5 10 3 4.5

Three-Dimensional
Steady Flow

14,400 27 43,200 16 175 30 83

Two-Dimensional
Radial Flow and
Dispersion

900 282 41,400 33 445 77 158

Point Initial Condition
in Uniform Flow (flow
at 45 degrees to
grid)

13,824 19 110,729 20 310 40 90

Constant Source in
Nonuniform Flow
(Two-Dimensional)5

12,831 381 57,066 210 2450 420 783

Constant Source in
Nonuniform Flow
(Three-
Dimensional)5

192,465 381 855,330 2425 NT NT NT

NT = Not Tested
1 Silicon Graphics server with an R8000 chip running Irix 6.0.1 with 576MB RAM and a 90 MHz processor.
MIPSpro F77 was used to compile MOC3D.

2 Data General server with a Motorola 88110 chip running DG Unix 5.4R3.10 with 256MB RAM and a 45 MHz
processor.  Green Hills Software FORTRAN-88000 was used to compile MOC3D.

3 IBM-compatible Pentium PC running WindowsNT with 32MB RAM and a 133 MHz processor.  Lahey LF90
version 4.50e was used to compile MOC3D.

4 Macintosh 7300 with 200 MHz PowerPC 604e processor and 32MB of RAM.  MOC3D was compiles using
Fortner Research LS FORTRAN Version 1.1 for Power Mac.

5 CELDIS = 0.5
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APPENDIX A:  DATA INPUT INSTRUCTIONS FOR MOC3D (Version 2)

This Appendix includes a complete set of instructions for preparing a data set for the
MOC3D model.  Major changes that have been implemented since the release of Version 1 are
shaded to highlight the new instructions.

MODFLOW Name File

Transport simulation is activated by including a record in the MODFLOW name file using
the file type (Ftype) “CONC” to link to the transport name file.  The transport name file specifies
the files to be used when simulating solute transport in conjunction with a simulation of ground-
water flow using MODFLOW.  The transport name file works in the same way as the MODFLOW
name file.

MODFLOW Source and Sink Packages

Except for recharge, concentrations associated with fluid sources (C') are read as auxiliary
parameters in the MODFLOW source package.  The source concentration is read from a new
column appended to the end of each line of the data file describing a fluid sink/source (see
documentation for revised MODFLOW model; Harbaugh and McDonald, 1996a and 1996b).  For
example, concentrations associated with well nodes should be appended to the line in the WEL
Package where the well’s location and pumping rate are defined.  These concentrations will be read
if the auxiliary parameter “CONCENTRATION” (or “CONC”) appears on the first line of the well
input data file.  The concentration in recharge is defined separately, as described in following
section “Source Concentration in Recharge File.”

To simulate solute transport the MODFLOW option enabling storage of cell-by-cell flow
rates for each fluid source or sink is required in all fluid packages except recharge.  The key word
“CBCALLOCATE” (or “CBC”) must appear on the first line of each input data file for a fluid
package (see Harbaugh and McDonald, 1996a and 1996b).

MOC3D Input Data Files

All input variables are read using free formats, except as specifically indicated.  In free
format, variables are separated by one or more spaces or by a comma and optionally one or more
spaces.  Blank spaces are not read as zeros.
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MOC3D Transport Name File (CONC)

FOR EACH SIMULATION:

 1.  Data:   FTYPE    NUNIT    FNAME

The name file consists of records defining the names and units numbers of the files.  Each
“record” consists of a separate line of data.  There must be a record for the listing file and for the
main MOC3D input file.

The listing (or output) file (“CLST”) must be the first record.  The other files may be in any
order.  Each record can be no more than 79 characters.

FTYPE The file type, which may be one of the following character strings:

CLST MOC3D listing file (separate from the MODFLOW listing file) [required].

MOC or MOCIMP Main MOC3D input data file [required].  Specifying MOC
indicates dispersion calculations will be explicit (as described by Konikow
and others, 1996) and specifying MOCIMP indicates dispersion
calculations will be implicit (as described in this report).

CRCH Concentrations in recharge [optional].

CNCA Separate output file containing concentration data in ASCII (text-only) format.
Frequency and format of printing controlled by NPNTCL and ICONFM
[optional].  If concentrations are written to a separate output file, they will
not be written to the main output file.

CNCB Separate output file containing concentration data in binary format [optional].

VELA Separate output file with velocity data in ASCII format.  Frequency and format
of printing controlled by NPNTVL and IVELFM [optional].

VELB Separate output file with velocity data in binary format [optional].

PRTA Separate output file with particle locations printed in ASCII format.  Frequency
and format of printing controlled by NPNTPL [optional].

PRTB Separate output file with particle locations printed in binary format [optional].

OBS Observation wells input file [optional].

DATA For formatted files such as those required by the OBS package and for array
data separate from the main MOC3D input data file [optional].

DATA(BINARY) For formatted input/output files [optional].

NUNIT The FORTRAN unit number used to read from and write to files.  Any legal unit
number other than 97, 98, and 99 (which are reserved by MODFLOW) can be
used provided that it is not previously specified in the MODFLOW name file.

FNAME The name of the file.
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Main MOC3D Package Input (MOC or MOCIMP)

Input for the method-of-characteristics (MOC3D) solute-transport package is read from the
unit specified in the transport name file.  The input consists of up to 19 separate records or data
sets, as described in detail below.  These data are used to specify information about the transport
subgrid, physical and chemical transport parameters, numerical solution variables, and output
formats.  Output file controls for the MOC3D package are specified in the transport name file,
described previously.  Compared to the original version of MOC3D, Version 2 includes one
additional data set, which is used only if the implicit solver is selected.  This data set is placed
between the original data sets 7 and 8, and hence has been labeled as data set 7.1.

FOR EACH SIMULATION:

 1.  Data:   HEDMOC A two-line character-string title describing the
simulation (80 text characters per line).

 2.  Data:   HEDMOC (continued)

 3.  Data:   ISLAY1   ISLAY2   ISROW1   ISROW2   ISCOL1   ISCOL2

ISLAY1 Number of first (uppermost) layer for transport.

ISLAY2 Last layer for transport.

ISROW1 First row for transport.

ISROW2 Last row for transport.

ISCOL1 First column for transport.

ISCOL2 Last column for transport.

Notes:

Transport may be simulated within a subgrid, which is a “window” within the primary
MODFLOW grid used to simulate flow.  Within the subgrid, the row and column spacing must be
uniform, but thickness can vary from cell to cell and layer to layer.  However, as discussed in the
section reviewing MOC3D assumptions, the range in thickness values (or product of thickness and
porosity) should be as small as possible.

 4.  Data:   NODISP    DECAY    DIFFUS

NODISP Flag for no dispersion (set NODISP=1 if no dispersion in problem; this will reduce
storage allocation).

DECAY First-order decay rate [1/T] (DECAY=0.0 indicates no decay occurs).

DIFFUS Effective molecular diffusion coefficient [L2/T].

Notes:

The decay rate (λ) is related to the half life (t1/2) of a constituent by λ = (ln 2)/t1/2.

The effective molecular diffusion coefficient (Dm) includes the effect of tortuosity.
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 5.  Data:   NPMAX    NPTPND

NPMAX Maximum number of particles available for particle tracking of advective transport
in MOC3D.  If set to zero, the model will calculate NPMAX according to the
following equation:

NPMAX = 2× NPTPND× NSROW× NSCOL× NSLAY.

NPTPND Initial number of particles per cell in transport simulation (that is, at t = 0.0).  Valid
options for default geometry of particle placement include 1, 2, 3, or 4 for one-
dimensional transport simulation; 1, 4, 9, or 16 for two-dimensional transport
simulation; and 1, 8, or 27 for three-dimensional transport simulation.  The user
can also customize initial placement of particles by specifying NPTPND as a
negative number, in which case the minus sign is recognized as a flag to
indicate custom placement is desired.  In this case, the user must input local
particle coordinates as described below.

IF NPTPND IS NEGATIVE IN SIGN:

 6.  Data:   PNEWL    PNEWR    PNEWC

PNEWL Relative position in the layer (z) direction for initial placement of particle within any
finite-difference cell.

PNEWR Relative position in the row (y) direction for initial placement of particle.

PNEWC Relative position in the column (x) direction for initial placement of particle.

Notes:

The three new (or initial) particle coordinates are entered sequentially for each of the
NPTPND particles.  Each line contains the three relative local coordinates for the new particles, in
order of layer, row, and column.  There must be NPTPND lines of data, one for each particle.  The
local coordinate system range is from -0.5 to 0.5, and represents the relative distance within the cell
about the node location at the center of the cell, so that the node is located at 0.0 in each direction.

FOR EACH SIMULATION:

 7.  Data:   CELDIS    FZERO    INTRPL

CELDIS  Maximum fraction of cell dimension that particle may move in one step (typically,
0.5 ≤ CELDIS ≤1.0 ).

FZERO  If the fraction of active cells having no particles exceeds FZERO, the program will
automatically regenerate an initial particle distribution before continuing the simulation
(typically, 0.01 ≤ FZERO ≤ 0.05 ).

INTRPL Flag for interpolation scheme used to estimate velocity of particles.  The default
(INTRPL=1) will use a linear interpolation routine; if INTRPL=2, a scheme will be
implemented that uses bilinear interpolation in the row and column (j and i)
directions only (linear interpolation will still be applied in the k, or layer, direction).
(See section “Discussion—Choosing appropriate interpolation scheme.”)
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FOR EACH SIMULATION (only if MOCIMP is specified in Transport Name File):

 7.1  Data:   FDTMTH    NCXIT    IDIREC    EPSSLV    MAXIT

FDTMTH Weighting factor for temporal differencing of dispersion equation (0.0 ≤ FDTMTH ≤
1.0).  We suggest using either a value of FDTMTH = 0.5, a centered-in-time (or
Crank-Nicolson) approximation, or FDTMTH = 1.0, a backward-in-time (or fully
implicit) approximation.  [Default value = 1]

NCXIT Number of iterations for the explicitly-lagged cross-dispersive flux terms (NCXIT ≥ 1).
We suggest that the user initially specify a value of 2, but if the solution exhibits
significant areas of negative concentrations, then the value of NCXIT should be
increased to require more iterations, which typically will reduce the extent and
magnitude of negative concentrations (at the cost of increased computational time).
[Default value = 2]

IDIREC  Direction index for permutation of the red-black node renumbering scheme.  The order
is as follows: 1: x,y,z; 2: x,z,y; 3: y,x,z; 4: y,z,x; 5: z,x,y; and 6: z,y,x.  The first
direction index is advanced most rapidly and the last direction index is advanced
least rapidly. In some cases, there can be a significant variation in the number of
iterations needed to achieve convergence, depending on the order of the directions
for the red-black renumbering.  We suggest that the user initially specify IDIREC =
1. If this leads to a relatively large number of iterations (more than 10), then the user
should experiment with alternate choices to determine the one requiring the fewest
number of iterations for their particular problem. [Default value = 1]

EPSSLV  Tolerance on the relative residual for the conjugate-gradient solution of the matrix of the
difference equations.  We suggest that the user initially specify EPSSLV ≤ 10-5.  An
adequately small value of EPSSLV has the property that a smaller value does not
change the numerical solution within the number of significant digtits desired by the
user.  In the single-precision code implemented here, EPSSLV should not be less
than 10-7. [Default value = 10-5]

MAXIT Maximum number of iterations allowed for the iterative solution to the differernce
equations for dispersive transport.  In most cases, MAXIT = 100 is satisfactory.
[Default value = 100]

Notes:

Entering a zero or out-of-range value for any of these five variables will cause the code to
use the indicated default value.
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FOR EACH SIMULATION:

 8.  Data:   NPNTCL  ICONFM  NPNTVL  IVELFM  NPNTDL  IDSPFM  NPNTPL

NPNTCL   Flag for frequency of printing concentration data.  If NPNTCL=-2, concentration data
will be printed at the end of every stress period; if NPNTCL=-1, data will be
printed at the end of every flow time step; if NPNTCL=0, data will be printed at the
end of the simulation; if NPNTCL=N>0, data will be printed every Nth particle
moves, and at the end of the simulation.  Initial concentrations are always printed.
Solute budget and mass balance information are only printed every time
concentration data are saved.

ICONFM  Flag for output format control for printing concentration data.  If concentration data are
written to main output file (file type CNCA is not used), ICONFM represents a code
indicating the format style (table 14, also see Harbaugh and McDonald, 1996a, p.
19).  If concentration data are written to a separate output file (file type CNCA
exists), specifying ICONFM ≥ 0 will indicate that concentration data are to be
written as a matrix of values for each layer of the subgrid, whereas specifying
ICONFM < 0 will indicate that concentration data are to be written as a table of
values having one row for each node in the subgrid and four columns (x, y, z, and
concentration), where x, y, and z are the actual nodal coordinates in the length units
of the model simulation.  Note that we follow the MODFLOW convention in that y
increases from top to bottom row, and z increases from top layer to bottom layer.
Also note that the x and y values are given with respect to the entire MODFLOW
grid, but the z location is calculated only for vertical distances within the layers of
the transport subgrid.  If data are written in matrix style, one header line precedes
and identifies the data for each layer.  If data are written as a table of values, one
header line is written each time that concentration data are saved.

NPNTVL  Flag for printing velocity data.  If NPNTVL=-1, velocity data will be printed at the end
of every stress period; if NPNTVL=0, data will be printed at the end of the
simulation; if NPNTVL=N>0, data will be printed every Nth flow time steps, and
at the end of the simulation.

IVELFM  Specification for format of velocity data, if being printed in main output file (see table
14).

NPNTDL  Flag for printing dispersion equation coefficients that include cell dimension factors
(see section “Program Segments”).  If NPNTDL=-2, coefficients will be printed at
the end of every stress period; if NPNTDL=-1, coefficients will be printed at the
end of the simulation; if NPNTDL=0, coefficients will not be printed; if
NPNTDL=N>0, coefficients will be printed every Nth flow time step.

IDSPFM  Specification for format of dispersion equation coefficients (see table 14).

NPNTPL Flag for printing particle locations in a separate output file (only used if file types
“PRTA” or “PRTB” appear in the MOC3D name file).  If neither “PRTA” or
“PRTB” is entered in the name file, NPNTPL will be read but ignored (so you must
always have some value specified here).  If either “PRTA” or “PRTB” is entered in
the name file, initial particle locations will be printed to the separate file first,
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followed by particle data at intervals determined by the value of NPNTPL.  If
NPNTPL=-2, particle data will be printed at the end of every stress period; if
NPNTPL=-1, data will be printed at the end of every flow time step; if
NPNTPL=0, data will be printed at the end of the simulation; if NPNTPL=N>0,
data will be printed every Nth particle moves, and at the end of the simulation.

Table 14.  Formats associated with MOC3D print flags.  (Positive values for wrap format;
negative values for strip format.  Also see Harbaugh and McDonald, 1996a, p. 19.)

Print flag Format Print flag Format Print flag Format

0 10G11.4 7 20F5.0 14 10F6.1

1 11G10.3 8 20F5.1 15 10F6.2

2 9G13.6 9 20F5.2 16 10F6.3

3 15F7.1 10 20F5.3 17 10F6.4

4 15F7.2 11 20F5.4 18 10F6.5

5 15F7.3 12 10G11.4

6 15F7.4 13 10F6.0

FOR EACH SIMULATION:

9.  Data:   CNOFLO Concentration associated with inactive cells of subgrid (used for
output purposes only).

FOR EACH LAYER OF THE TRANSPORT SUBGRID:

10.  Data:   CINT(NSCOL,NSROW) Initial concentration.
   Module:   U2DREL*

FOR EACH SIMULATION, ONLY IF TRANSPORT SUBGRID DIMENSIONS ARE
SMALLER THAN FLOW GRID DIMENSIONS:

11.  Data:   CINFL(ICINFL) ′ C  to be associated with fluid inflow across the
boundary of the subgrid.

   Module:   U1DREL*

Notes:
The model assumes that the concentration outside of the subgrid is the same within each

layer, so only one value of CINFL is specified for each layer within and adjacent to the subgrid.  That
is, the size of the array (ICINFL) is determined by the position of the subgrid with respect to the
entire (primary) MODFLOW grid.  If the transport subgrid has the same dimensions as the flow grid,

                                                
* Module is a standard MODFLOW input/output module.
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this parameter should not be included in the input data set.  If the subgrid and flow grid have the
same number of layers, but the subgrid has fewer rows or fewer columns, ICINFL=NSLAY.  Values
are also required if there is a flow layer above the subgrid and/or below the subgrid.  The order of
input is:  ′ C  for first (uppermost) transport layer (if required); ′ C  for each successive (deeper)
transport layer (if required); ′ C  for layer above subgrid (if required); and ′ C  for layer below
subgrid (if required).

FOR EACH SIMULATION:

12.  Data:   NZONES Number of zone codes among fixed-head nodes in transport subgrid.

       IF NZONES > 0:

     Data:   IZONE    ZONCON

IZONE Value identifying a particular zone.
ZONCON Source concentration associated with nodes in the zone defined by IZONE above.

Notes:
Zones are defined within the IBOUND array in the BAS Package of MODFLOW by

specifying unique negative values for fixed-head nodes to be associated with separate fluid source
concentrations.  Each zone is defined by a unique value of IZONE and a concentration associated
with it (ZONCON).  There must be NZONES lines of data, one for each zone.  Note that values of
IZONE in this list must be negative for consistency with the definitions of fixed-head nodes in the
IBOUND array in the BAS Package.  If a negative value of IBOUND is defined in the BAS package
but is not assigned a concentration value here, MOC3D will assume that the source concentrations
associated with those nodes equal 0.0.

FOR EACH LAYER OF THE TRANSPORT SUBGRID:

13.  Data:   IGENPT(NSCOL,NSROW) Flag to treat fluid sources and sinks as
either “strong” or “weak.”

   Module:   U2DINT*

Notes:
Where fluid source is “strong,” new particles are added to replace old particles as they are

advected out of that cell.  Where a fluid sink is “strong,” particles are removed after they enter that
cell and their effect accounted for.  Where sources or sinks are weak, particles are neither added nor
removed, and the source/sink effects are incorporated directly into appropriate changes in particle
positions and concentrations.  If IGENPT=0, the node will be considered a weak source or sink; if
IGENPT=1, it will be a strong source or sink.  See section on “Special Problems” and discussion by
Konikow and Bredehoeft (1978).

                                                
* Module is a standard MODFLOW input/output module.
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IF NODISP ≠ 1 (If dispersion is included in simulation):

14.    Data:    ALONG(NSLAY)    Longitudinal dispersivity.
     Module:    U1DREL*

15.    Data:    ATRANH(NSLAY)   Horizontal transverse dispersivity.
     Module:    U1DREL*

16.    Data:    ATRANV(NSLAY)   Vertical transverse dispersivity.
     Module:    U1DREL*

FOR EACH SIMULATION:

17.    Data:    RF(NSLAY) Retardation factor (RF=1 indicates no retardation).
     Module:    U1DREL*

Notes:
If RF=0.0 in input, the code automatically resets it as RF=1.0 to indicate no retardation.

FOR EACH LAYER OF TRANSPORT SUBGRID:

18a.   Data:    THCK(NSCOL,NSROW)   Cell thickness.
     Module:    U2DREL*

18b.   Data:    POR(NSCOL,NSROW)    Cell porosity.
     Module:    U2DREL*

Notes:
The thickness and porosity are input as separate arrays for each layer of the transport

subgrid.  The sequence used in data set 18 is to first define the thickness of the first layer of the
transport subgrid, and then define the porosity of that same layer.  Next, that sequence is repeated for
all succeeding layers.  The product of thickness and porosity should not be allowed to vary greatly
among cells in the transport subgrid.

                                                
* Module is a standard MODFLOW input/output module.
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Source Concentration in Recharge File (CRCH)

Concentrations in recharge, if the recharge package is used, are read from a separate unit
specified in the MOC3D name file.  This is defined using the file type (Ftype) “CRCH.”

FOR EACH STRESS PERIOD, IF RECHARGE PACKAGE USED:

 1.  Data:   INCRCH    Flag to reuse or read new recharge concentrations.

Notes:
Read new recharge concentrations if INCRCH ≥  0.  Reuse recharge concentrations from the

last stress period if INCRCH < 0.

 2.  Data:   CRECH(NSCOL,NSROW)  Source concentration associated with fluid
entering the aquifer in recharge.

   Module:   U2DREL*

Observation Well File (OBS)

Nodes of the transport subgrid can be designated as “observation wells.”  At each such
node, the time, head, and concentration after each move increment will be written to a separate
output file to facilitate graphical postprocessing of the calculated data.  The input file for specifying
observation wells is read if the file type (Ftype) “OBS” is included in the MOC3D name file.

FOR EACH SIMULATION, IF OBS PACKAGE USED:

 1.  Data:   NUMOBS    IOBSFL

NUMOBS  Number of observation wells.

IOBSFL  If IOBSFL = 0, well data are saved in NUMOBS separate files.  If IOBSFL>0, all
observation well data will be written to one file, and the file name and unit
number used for this file will be that of the first observation well in the list.

FOR EACH OBSERVATION WELL:

 2.  Data:   LAYER     ROW    COLUMN    UNIT

LAYER  Layer of observation well node.
ROW  Row of observation well node.
COLUMN  Column of observation well node.
UNIT   Unit number for output file.

Notes:
If NUMOBS>1 and IOBSFL = 0, you must specify a unique unit number for each observa-

tion well and match those unit numbers to DATA file types and file names in the MOC3D name file.
If IOBSFL>0, you must specify a unique unit number for the first observation well and match that
unit number to a DATA file type and file name in the MOC3D name file.
                                                
* Module is a standard MODFLOW input/output module.
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APPENDIX B:  ANNOTATED INPUT DATA SET FOR EXAMPLE
PROBLEM

This example input data set is the one used to generate the solution for the base case in the
one-dimensional steady-state flow problem.  Parameter values are indicated in table 6 and selected
results are shown in figures 4 and 6.  Several of the following data files (finite.nam, finite.bas,
finite.bcf, and finite.sip) are those required for MODFLOW-96, and their formats are described
by Harbaugh and McDonald (1996a).

In the data files shown below, the right side of some data lines includes a semi-colon
followed by text that describes the parameters for which values are given.  These comments
(including the semi-colon) are not read by the program because in free format the code will only
read the proper number of variables and ignore any subsequent information on that line.  This style
of commenting data files is optional, but users may find it helpful when preparing their own data
files.

Information pertaining specifically to the implicit solution is highlighted by shading.

Following (enclosed in a border) are the contents of the MODFLOW name file for the
sample problem; explanations are noted outside of border:

File name:  finite.nam

list    16     finite.lst ← Designates main output file for MODFLOW

bas     95     finite.bas ← Basic input data for MODFLOW

bcf     11     finite.bcf ← Block-centered flow package

sip     19     finite.sip ← Input for numerical solution of flow equation

conc    33     fint_moc.nam ← Transport name file (turns transport “on”)

   ↑            ↑                     ↑
   1             2                     3 

1  Ftype (that is, the type of file)
2  Unit number
3  File name (name chosen to reflect contents of file)
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Following (enclosed in a border) are the contents of the basic package input data file for the
MODFLOW simulation of the sample problem; explanations are noted outside of border:

File name:  finite.bas

Finite:  Compare to Wexler program and MOC3D                  BAS Input ← 1

      NLAY      NROW      NCOL      NPER    ITMUNI ← 1

         1         1       122         1         1 ← 2

FREE  CHTOCH ← 3

         0         1      ; IAPART,ISTRT ← 4

        95         1(25I3)                                 3   ; IBOUND ← 5

 -1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5

  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5

  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5

  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5

  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 -2 ← 5

      0.00                                            ; HNOFLO ← 6

        95       1.0(122F6.0)                     1   ; HEAD ← 7

  12.1 ← 7

 120.0           1        1.    ; PERLEN,NSTP,TSMULT ← 8

1  Two header lines of comments.  For convenience and clarity, the second line is used to label names of
parameters on subsequent line of file.

2  Flow grid dimensions, number of periods, and time units.
3  Options line (new in MODFLOW-96)
4  Flags for buffer array and drawdown calculations.
5  IBOUND identifiers (first line) and array
6  Head value assigned to inactive cells
7  Initial head information
8  MODFLOW time-step information

Following (enclosed in a border) are the contents of the block-centered flow package input
data file; explanations are noted outside of border:

File name:  finite.bcf

         1   0 0.0 0 0.0 0 0  ; ISS,flags         BCF Input ← 1

         0                    ; LAYCON ← 2

         0       1.0          ; TRPY ← 3

         0       0.1          ; DELR ← 4

         0       0.1          ; DELC ← 4

         0      0.01          ; TRAN

1  Flag for steady-state flow, flag for cell-by-cell flow terms, five flags related to wetting
2  Layer type
3  Anisotropy factor
4  Grid spacing information
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Following (enclosed in a border) are the contents of the strongly implicit procedure package
input data file; explanations are noted outside of border:

File name:  finite.sip

500         5     ; MXITER,NPARM                SIP Input ← 1

1.   0.0000001     0     0.001   0 ; ACCL,HCLOSE,IPCALC,WSEED,IPRSIP ← 2

1  Maximum iterations, number of iteration parameters
2  Acceleration parameter, head change criterion, flag for seed, seed, printout interval for SIP

Following (enclosed in a border) are the contents of the MOC3D name file for the sample
problem; explanations are noted outside of border:

File name:  fint_moc.nam

clst     94     finite.out ← Designates main output file for MOC3D

mocimp   96     fint_imp.moc ← Main input data file for MOC3D

obs      44     finite.obs ← Input data file for observation wells

data     45     finite.oba ← Output file for observation well data

cnca     22     finite.cna ← Separate output file for concentration data (ASCII)

   ↑               ↑                     ↑
   1                2                     3 

1  Ftype
2  Unit number
3  File name
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Following (enclosed in a border) are the contents of the main input data file for the MOC3D
simulation for the sample problem; selected explanations are noted outside of border:

File name:  finite_imp.moc
One-dimensional, Steady Flow, No Decay, Low Dispersion: MOC3D (Implicit) ← 1
    ISLAY1    ISLAY2    ISROW1    ISROW2    ISCOL1    ISCOL2 ← 1
         1         1         1         1         2       121 ← 2
         0      0.00       0.0 ; NODISP, DECAY, DIFFUS ← 3
         0         3           ; NPMAX, NPTPND ← 4
       0.5      0.05         2 ; CELDIS, FZERO, INTRPL ← 4
       0.5  2  1  1.e-05   100 ; FDTMTH,NXCIT,IDIR,EPSSLV,MAXIT ← 5
  0 -1 0 0 0 0 0 ; NPNTCL, ICONFM, NPNTVL, IVELFM, NPNTDL, IDSPFM, NPRTPL ← 6
       0.0                                         ; CNOFLO ← 7
         0       0.0 (122F3.0)                     ; initial concentration
         0       1.                                ; C' inflow
         2                                         ; NZONES to follow ← 8
        -1       1.0                               ; IZONE, ZONCON ← 8
        -2       0.0                               ; IZONE, ZONCON ← 8
         0         0                               ; IGENPT ← 9
         0       0.1                               ; longitudinal disp.
         0       0.1                               ; transverse disp. horiz.
         0       0.1                               ; transverse disp. vert.
         0       1.0                               ; retardation factor
         0       1.0                               ; thickness
         0       0.1                               ; porosity

1  Two header lines of comments.  For convenience and clarity, the second line is used to label names of
parameters on subsequent line of file.

2  Indices for transport subgrid
3  Flag for no dispersion, decay rate, diffusion coefficient
4  Particle information for advective transport
5  Information to control implicit dispersion calculations
6  Print flags
7  Value of concentration associated with inactive cells
8  Concentrations associated with fixed-head nodes (fixed head nodes are defined in the IBOUND array in the

MODFLOW BAS package)
9  Flag for “strong” sources or sinks

Following (enclosed in a border) are the contents of the observation well input data file for
the sample problem; explanations are noted outside of border:

File name:  finite.obs

  3  1                ;NUMOBS  IOBSFL     Observation well data ← 1
  1  1   2  45        ;layer, row, column, unit number ← 2
  1  1  42            ;layer, row, column ← 2
  1  1 112            ;layer, row, column ← 2

1  Number of observation wells, flag to print to one file or separate files
2  Node location and unit number for output file (linked to the Ftype DATA in MOC3D name file)
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APPENDIX C:  SELECTED OUTPUT FOR EXAMPLE PROBLEM

This example output was generated from the input data sets listed in Appendix B for the
base case of the one-dimensional steady-state flow problem.  We do not include the main
MODFLOW listing (output) file.  The line spacing and font sizes of the output files have been
modified in places to enhance the clarity of reproduction in this report.  Some repetitive lines of
output have been deleted where indicated by an ellipsis (. . . ).  Output related specifically to the
implicit solution is highlighted by shading.

Some brief annotations were added to this sample output listing to help the reader
understand the purpose of various sections of output.  These annotations are written in bold italics.

Following are the contents of the MOC3D main output file (finite.out) for the sample
problem.

              U.S. GEOLOGICAL SURVEY
 METHOD-OF-CHARACTERISTICS SOLUTE-TRANSPORT MODEL
           MOC3D (Version 2.0) 11/16/98

 MOC BASIC INPUT READ FROM UNIT
 LISTING FILE: finite.out   UNIT  94

 OPENING fint_imp.moc
 FILE TYPE: MOCIMP   UNIT  96

 OPENING finite.obs
 FILE TYPE: OBS   UNIT  44

 OPENING finite.oba
 FILE TYPE: DATA   UNIT  45

 OPENING finite.cna
 FILE TYPE: CNCA   UNIT  22

 MOC BASIC INPUT READ FROM UNIT  96

2 TITLE LINES:
 One-dimensional, Steady Flow, No Decay, Low Dispersion: MOC3D (Implicit)
     ISLAY1    ISLAY2    ISROW1    ISROW2    ISCOL1    ISCOL2

PROBLEM DESCRIPTORS, INCLUDING GRID CHARACTERISTICS AND PARTICLE INFORMATION:
      MAPPING OF SOLUTE TRANSPORT SUBGRID IN FLOW GRID:
 FIRST LAYER FOR SOLUTE TRANSPORT =   1      LAST LAYER FOR SOLUTE TRANSPORT  =   1
 FIRST ROW FOR SOLUTE TRANSPORT   =   1      LAST ROW FOR SOLUTE TRANSPORT    =   1
 FIRST COLUMN FOR SOLUTE TRANSPORT=   2      LAST COLUMN FOR SOLUTE TRANSPORT = 121

 UNIFORM DELCOL AND DELROW IN SUBGRID FOR SOLUTE TRANSPORT

 NO. OF LAYERS =    1   NO. OF ROWS =    1   NO. OF COLUMNS =  120
 NO SOLUTE DECAY
 NO MOLECULAR DIFFUSION
 MAXIMUM NUMBER OF PARTICLES (NPMAX) =      720
    13669 ELEMENTS IN X ARRAY ARE USED BY MOC
       12 ELEMENTS IN X ARRAY ARE USED BY OBS

FILE INFORMATION
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 NUMBER OF PARTICLES INITIALLY IN EACH ACTIVE CELL (NPTPND) =   3
 PARTICLE MAP ("o" indicates particle location; shown as
              fractions of cell distances relative to node location):

       o------o------o

     -1/3     0     1/3

 INITIAL RELATIVE PARTICLE COORDINATES
   1    0.00000   0.00000  -0.33333
   2    0.00000   0.00000   0.00000
   3    0.00000   0.00000   0.33333

 CELDIS=     0.500
 FZERO =     0.050

INTRPL= 2;  BILINEAR INTERPOLATION SCHEME

 NUMERICAL PARAMETERS FOR IMPLICIT SOLVER:
 FDTMTH =     0.50
 NCXIT  =      2
 IDIREC =      1
 EPSSLV =  1.0000E-05
 MAXIT  =    100

NPNTCL=  0:     CONCENTRATIONS WILL BE WRITTEN AT THE END OF THE SIMULATION
MODFLOW FORMAT SPECIFIER FOR CONCENTRATION DATA: ICONFM= -1

NPNTVL=  0:         VELOCITIES WILL BE WRITTEN AT THE END OF THE SIMULATION
MODFLOW FORMAT SPECIFIER FOR      VELOCITY DATA: IVELFM=  0

NPNTDL=  0: DISP. COEFFICIENTS WILL NOT BE WRITTEN

NPNTPL=  0: PARTICLE LOCATIONS WILL NOT BE WRITTEN

CONCENTRATION WILL BE SET TO 0.00000E+00 AT ALL NO-FLOW NODES (IBOUND=0).

    INITIAL CONCENTRATION =  0.0000000E+00 FOR LAYER   1

VALUES OF C' REQUIRED FOR SUBGRID BOUNDARY ARRAY =    1
ONE FOR EACH LAYER IN TRANSPORT SUBGRID

ORDER OF C' VALUES: FIRST LAYER IN SUBGRID, EACH SUBSEQUENT LAYER,
LAYER ABOVE SUBGRID, LAYER BELOW SUBGRID:

  SUBGRID BOUNDARY ARRAY  =   1.000000

 NUMBER OF ZONES FOR CONCENTRATIONS AT FIXED HEAD CELLS =    2

 ZONE FLAG =   -1     INFLOW CONCENTRATION =   1.0000E+00
 ZONE FLAG =   -2     INFLOW CONCENTRATION =   0.0000E+00

         SINK-SOURCE FLAG =              0 FOR LAYER   1

 LONGITUDNL. DISPERSIVITY =  0.1000000

  HORIZ. TRANSVERSE DISP. =  0.1000000

   VERT. TRANSVERSE DISP. =  0.1000000

 OUTPUT

 CONTROL

 INITIAL AND

 BOUNDARY

 CONDITIONS

 FOR SOLUTE
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       RETARDATION FACTOR =   1.000000

        INITIAL THICKNESS =   1.000000     FOR LAYER   1

         INITIAL POROSITY =  0.1000000     FOR LAYER   1

COORDINATES FOR   3 OBSERVATION WELLS:

  WELL #   LAYER     ROW  COLUMN    UNIT
       1       1       1       2      45
       2       1       1      42      45
       3       1       1     112      45
ALL OBSERVATION WELL DATA WILL BE WRITTEN ON UNIT  45

CONCENTRATION DATA WILL BE SAVED ON UNIT  22 IN X,Y,Z,CONC FORMAT

 TOTAL NUMBER OF PARTICLES GENERATED =       360
 TOTAL NUMBER OF ACTIVE NODES (NACTIV) =       120
 MAX. NUMBER OF CELLS THAT CAN BE VOID OF PARTICLES (NZCRIT) =      6
     (IF NZCRIT EXCEEDED, PARTICLES ARE REGENERATED)

CALCULATED VELOCITIES (INCLUDING EFFECTS OF RETARDATION, IF PRESENT):

EFFECTIVE MEAN SOLUTE VELOCITIES IN COLUMN DIRECTION
                          AT NODES

1
VELOCITY (COL)   IN LAYER  1 AT END OF TIME STEP  1 IN STRESS PERIOD  1
  -----------------------------------------------------------------------

            1           2           3           4           5           6           7   ...
...
   .......................................................................................................   ...
   1   0.1000      0.1000      0.1000      0.1000      0.1000      0.1000      0.1000  ...

...

EFFECTIVE MEAN SOLUTE VELOCITIES IN ROW DIRECTION
                          AT NODES

1
  VELOCITY (ROW)   IN LAYER  1 AT END OF TIME STEP  1 IN STRESS PERIOD  1
  -----------------------------------------------------------------------

           1          2          3          4          5          6          7          8          9      ...
...
 ........................................................................................................ ...
   1   0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  ...

...

EFFECTIVE MEAN SOLUTE VELOCITIES IN LAYER DIRECTION
                          AT NODES

1
  VELOCITY (LAYER) IN LAYER  1 AT END OF TIME STEP  1 IN STRESS PERIOD  1
  -----------------------------------------------------------------------

           1          2          3          4          5          6          7          8          9      ...
...
 ........................................................................................................ ...
   1   0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  ...

...
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          STABILITY CRITERIA --- M.O.C.

     MAXIMUM FLUID VELOCITIES:  C-VEL =  1.00E-01     R-VEL =  1.00E-20     L-VEL =  1.00E-18
 MINIMUM TIME TO TRAVEL THCK =  1.00E+18

 TIMV =  5.00E-01     NTIMV  =    241

     MAX. C-VEL. IS CONSTRAINT AND OCCURS BETWEEN NODES (   2,   1,   1) AND (   1,   1,   1)
 THERE ARE NO FLUID SOURCES IN THE TRANSPORT SUBGRID

 NUMBER OF MOVES FOR ALL STABILITY CRITERIA:
    CELDIS   INJECTION
       241           1

 CELDIS IS LIMITING

          TIME STEP    1 IN STRESS PERIOD    1

          NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP  =  241
            MOVE TIME STEP (TIMV)=  4.979253113270E-01

(NUMERICAL SOLUTION TO TRANSPORT EQUATION STARTS AT THIS POINT)

  NP       =      360 AT START OF MOVE          IMOV     =            1
  No. of solver iterations =    1 Relative residual =   1.9848E-09
  NP       =      360 AT START OF MOVE          IMOV     =            2
  No. of solver iterations =    1 Relative residual =   3.6997E-08

...

  NP       =      361 AT START OF MOVE          IMOV     =          240
  No. of solver iterations =    1 Relative residual =   7.8027E-08
  NP       =      361 AT START OF MOVE          IMOV     =          241
  No. of solver iterations =    1 Relative residual =   9.7147E-08

           SOLUTE BUDGET AND MASS BALANCE FOR TRANSPORT SUBGRID

      VALUES CALCULATED AT END OF:
               STRESS PERIOD    1  OUT OF    1
              FLOW TIME STEP    1  OUT OF    1
    TRANSPORT TIME INCREMENT  241  OUT OF  241

      ELAPSED TIME =  1.2000E+02

      CHEMICAL MASS IN STORAGE:
          INITIAL:   MASS DISSOLVED =  0.0000E+00     MASS SORBED =  0.0000E+00
          PRESENT:   MASS DISSOLVED =  1.1391E-01     MASS SORBED =  0.0000E+00

               CHANGE IN MASS STORED = -1.1391E-01

TRACK PROGRESS

OF MOVES, NUMBER

OF ACTIVE

PARTICLES, AND

IMPLICIT SOLVER
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     CUMULATIVE SOLUTE MASS  (L**3)(M/VOL)
     ----------------------

          IN:
          ---
                     DECAY =  0.0000E+00
             CONSTANT HEAD =  0.0000E+00
          SUBGRID BOUNDARY =  1.2001E-01
                  RECHARGE =  0.0000E+00
                     WELLS =  0.0000E+00
                    RIVERS =  0.0000E+00
                    DRAINS =  0.0000E+00
     GENL. HEAD-DEP. BDYS. =  0.0000E+00
        EVAPOTRANSPIRATION =  0.0000E+00
      SPECIFIED FLOW (FHB) =  0.0000E+00

                  TOTAL IN =  1.2000E-01

         OUT:
         ----
                     DECAY =  0.0000E+00
             CONSTANT HEAD =  0.0000E+00
          SUBGRID BOUNDARY = -6.3127E-03
                  RECHARGE =  0.0000E+00
                     WELLS =  0.0000E+00
                    RIVERS =  0.0000E+00
                    DRAINS =  0.0000E+00
     GENL. HEAD-DEP. BDYS. =  0.0000E+00
        EVAPOTRANSPIRATION =  0.0000E+00
      SPECIFIED FLOW (FHB) =  0.0000E+00

                 TOTAL OUT = -6.3127E-03

         SOURCE-TERM DECAY =  0.0000E+00

                  RESIDUAL = -2.2171E-04

       PERCENT DISCREPANCY = -1.8476E-01 RELATIVE TO MASS FLUX IN

ITEMIZED

BUDGETS FOR

SOLUTE FLUXES
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Following (enclosed in a border) are the abridged contents of the observation well output
file for the sample problem.  This output file was generated using the option to write all
observation well data to a single file (IOBSFL = 1).

File name:  finite.oba

 "OBSERVATION WELL DATA"
 "TIME, THEN HEAD AND CONC. FOR EACH OBS. WELL AT NODE (K,I,J)"
 "  TIME:      H & C AT   1,  1,  2    H & C AT   1,  1, 42    H & C AT   1,  1,112 "
 0.0000E+00   0.000E+00   0.000E+00   0.000E+00   0.000E+00   0.000E+00   0.000E+00
 4.9793E-01   1.200E+01   2.763E-01   8.000E+00   5.865E-32   1.000E+00   0.000E+00
 9.9585E-01   1.200E+01   7.444E-01   8.000E+00   8.686E-30   1.000E+00   0.000E+00
 1.4938E+00   1.200E+01   6.607E-01   8.000E+00   4.280E-28   1.000E+00   0.000E+00
 1.9917E+00   1.200E+01   8.175E-01   8.000E+00   1.949E-26   1.000E+00   0.000E+00
 2.4896E+00   1.200E+01   8.219E-01   8.000E+00   4.459E-25   1.000E+00   0.000E+00
 ...
 ...
 1.1851E+02   1.200E+01   1.000E+00   8.000E+00   1.000E+00   1.000E+00   7.043E-01
 1.1900E+02   1.200E+01   1.000E+00   8.000E+00   1.000E+00   1.000E+00   7.133E-01
 1.1950E+02   1.200E+01   1.000E+00   8.000E+00   1.000E+00   1.000E+00   7.255E-01
 1.2000E+02   1.200E+01   1.000E+00   8.000E+00   1.000E+00   1.000E+00   7.334E-01
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Following (enclosed in a border) are the partial contents of the separate ASCII output file
for concentration in a table format style.  Initial concentrations follow the first header line; final
concentrations follow the second (internal) header line.

File name:  finite.cna

CONCENTRATIONS AT NODES (X,Y,Z,CONC): IMOV=    0, KSTP=    0, KPER=    0, SUMTCH=0.0000E+00
  1.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  2.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  3.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  4.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  5.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  6.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  7.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  8.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  9.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00

...

1.1650E+01  5.0000E-02  5.0000E-01  0.0000E+00
  1.1750E+01  5.0000E-02  5.0000E-01  0.0000E+00
  1.1850E+01  5.0000E-02  5.0000E-01  0.0000E+00
  1.1950E+01  5.0000E-02  5.0000E-01  0.0000E+00
  1.2050E+01  5.0000E-02  5.0000E-01  0.0000E+00
CONCENTRATIONS AT NODES (X,Y,Z,CONC): IMOV=  241, KSTP=    1, KPER=    1, SUMTCH=1.2000E+02
  1.5000E-01  5.0000E-02  5.0000E-01  1.0000E+00
  2.5000E-01  5.0000E-02  5.0000E-01  1.0000E+00
  3.5000E-01  5.0000E-02  5.0000E-01  1.0000E+00
  4.5000E-01  5.0000E-02  5.0000E-01  1.0000E+00
  5.5000E-01  5.0000E-02  5.0000E-01  1.0000E+00
  6.5000E-01  5.0000E-02  5.0000E-01  1.0000E+00
  7.5000E-01  5.0000E-02  5.0000E-01  1.0000E+00
  8.5000E-01  5.0000E-02  5.0000E-01  1.0000E+00
  9.5000E-01  5.0000E-02  5.0000E-01  1.0000E+00

...

1.1650E+01  5.0000E-02  5.0000E-01  6.1888E-01
  1.1750E+01  5.0000E-02  5.0000E-01  5.9739E-01
  1.1850E+01  5.0000E-02  5.0000E-01  5.7546E-01
  1.1950E+01  5.0000E-02  5.0000E-01  5.5432E-01
  1.2050E+01  5.0000E-02  5.0000E-01  5.3902E-01


