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PREFACE

The MOC3D computer code simulates the transport of a single solute in ground
water that flows through porous media.  The model is a package for the U.S. Geological
Survey (USGS) MODFLOW ground-water model.

The new algorithm (ELLAM) documented in this report solves an integral form of
the solute-transport equation, which is an expression of local conservation of mass.  The
code incorporates an implicit difference approximation in time for the dispersive term.
Thus ELLAM offers an alternative to previously documented particle-tracking methods of
MOC3D.  It yields a precise global mass balance and can provide qualitatively good
results for advection-dominated systems having very high Courant numbers at low
computational cost.

The new MOC3D code is available for downloading over the Internet from a
USGS software repository.  The repository is accessible on the World Wide Web
(WWW) from the USGS Water-Resources Information Web page at
http://water.usgs.gov/.  The site for the public repository is:
http://water.usgs.gov/software/.  The public anonymous FTP site is on the Water-
Resources Information server (water.usgs.gov or 130.11.50.175) in the /pub/software
directory.  The code and documentation will also be available through an alternative web
page for USGS ground-water models at http://water.usgs.gov/nrp/gwsoftware/.  When
this code is revised or updated in the future, new releases will be made available at these
same sites.  The code that incorporates the ELLAM algorithm, as documented in this
report, is designated as Version 3.5.

Although extensive testing of the ELLAM algorithm indicates that this model will
yield reliable calculations for a wide variety of field problems, the user is cautioned that
the accuracy and efficiency of the model can be affected significantly for certain
combinations of parameter values and boundary conditions.



iv



v

CONTENTS

                                                                                        Page

ABSTRACT ...............................................................................................................   1
INTRODUCTION ......................................................................................................   1
THEORETICAL BACKGROUND AND GOVERNING EQUATIONS.....................   3

Governing Equation for Solute Transport ........................................................   3
Review of Assumptions ...................................................................................   5

NUMERICAL METHODS .........................................................................................   5
Ground-Water Flow Equation..........................................................................   6
Average Interstitial Velocity ............................................................................   6
Solute-Transport Equation ...............................................................................   7
ELLAM...........................................................................................................   7

Cell Integral Equations.........................................................................   7
Outflow Boundary Equations ...............................................................   8
Mass Tracking .....................................................................................   9
Decay................................................................................................... 10
Numerical Integration .......................................................................... 11

Dispersion ................................................................................ 11
Mass Storage at New Time Level ............................................. 11
Mass Storage at Old Time Level............................................... 13
Approximate Test Functions..................................................... 13
Source Integral ......................................................................... 16
Sink Integral ............................................................................. 16
Inflow Boundary Integral.......................................................... 17
Outflow Integrals...................................................................... 17

Accuracy Criteria ............................................................................................ 18
Mass Balance .................................................................................................. 19
Special Problems ............................................................................................. 20
Review of ELLAM Assumptions...................................................................... 20

COMPUTER PROGRAM........................................................................................... 21
Program Segments........................................................................................... 22
Guidance on Input Parameter Values ............................................................... 24

MODEL TESTING AND EVALUATION.................................................................. 25
One-Dimensional Flow.................................................................................... 26
Uniform Flow, Three-Dimensional Transport .................................................. 30
Two-Dimensional Radial Flow ........................................................................ 32
Point Initial Condition in Uniform Flow .......................................................... 33
Constant Source in Nonuniform Flow.............................................................. 37
Relative Computational and Storage Efficiency ............................................... 40

CONCLUSIONS......................................................................................................... 41
REFERENCES ........................................................................................................... 42
APPENDIX A:  DATA INPUT INSTRUCTIONS FOR MOC3D (Version 3.5) .......... 43

MODFLOW Name File.................................................................................... 43
MODFLOW Source and Sink Packages ........................................................... 43



vi

                                                                                      Page

MOC3D Input Data Files................................................................................. 43
MOC3D Transport Name File (CONC)................................................ 44
Main MOC3D Package Input (MOC, MOCIMP, or ELLAM) ............... 45
Source Concentration in Recharge File (CRCH) .................................. 53
Observation Well File (OBS) ............................................................... 53

APPENDIX B:  ANNOTATED INPUT DATA SET FOR EXAMPLE PROBLEM.... 54
APPENDIX C:  SELECTED OUTPUT FOR EXAMPLE PROBLEM........................ 58

FIGURES

1-9. Diagrams showing:
1. Notation used to label rows, columns, and nodes within one layer (k) of a

three-dimensional, block-centered, finite-difference grid for MOC3D
(from Konikow and others, 1996) .............................................................. 6

2. Representative three-dimensional grid for MOC3D illustrating notation
for layers (from Konikow and others, 1996) .............................................. 6

3. Schematic representation (for a simple case having constant velocity)
showing how mass is advected into cell Ωl at time level tn+1 from the
inflow boundary, from a fluid source in cell 1, and from storage at time
level tn in cells 1 and 2............................................................................... 8

4. Schematic representation showing how mass is advected to an outflow
boundary at time level tn+1 from the inflow boundary, from a fluid source
in cell 3, and from storage at time level tn in all five cells .......................... 9

5. Two-dimensional example illustrating that pre-image of a cell may be
irregularly shaped and not easily defined by backtracking from tn+1

to tn ........................................................................................................... 10
6. Solute concentration versus distance to illustrate one-dimensional

advection of known mass distribution from old time level to new time
level (Courant number = 1)........................................................................ 10

7. Examples of spatial distribution of approximate test functions (wl) for
selected one-dimensional cases.................................................................. 14

8. Simplified flow chart for the transport loop of the ELLAM calculation
process ...................................................................................................... 24

9. Schematic representation of tracking mass from an inflow boundary .......... 25
10–13. Graphs showing:

10. Numerical and analytical solutions at three different locations for solute
transport in a one-dimensional, steady flow field ....................................... 27

11. Numerical and analytical solutions for the case of increased dispersivity .... 28



vii

Page

12. Numerical and analytical solutions for three different times for same one-
dimensional, steady flow, solute-transport problem shown in figure 10...... 29

13. Numerical and analytical solutions for three different times for case in
which solute is subject to decay at rate of λ = 0.01 s-1 ................................ 29

14-22. Diagrams showing:
14. Concentration contours for (a) analytical and (b-d) ELLAM numerical

solutions in the horizontal plane containing the solute source (layer 1)
for three-dimensional solute transport in a uniform steady flow field
at t = 400 days........................................................................................... 31

15. Contours of relative concentrations calculated using (a) analytical and
(b-e) numerical ELLAM models for solute transport in a steady radial
flow field .................................................................................................. 33

16. Concentration contours for (a) analytical and (b) numerical solutions for
transport of a point initial condition in uniform flow in the x-direction
at t = 90 days............................................................................................. 35

17. Concentration contours for (a) analytical and (b) ELLAM numerical
solutions for transport of a dispersed-point initial condition in uniform
flow in the x-direction at t = 130 days........................................................ 35

18. Concentration contours for (a) analytical and (b) ELLAM numerical
solutions for transport of a dispersed-point initial condition in uniform
flow at 45 degrees to the x-direction at t = 130 days .................................. 36

19. Concentration contours for ELLAM numerical solution showing areas
of calculated negative concentrations for problem represented in
figure 18b.................................................................................................. 37

20. Two-dimensional simulation results for nonuniform-flow test case
showing plume positions as contours of relative concentration; (a) finite-
element model (modified from Burnett and Frind, 1987, figure 8a), and
(b) ELLAM solution using CELDIS = 30................................................... 38

21. Three-dimensional simulation results for nonuniform-flow test case in
which αTH = 0.1 m and αTV = 0.01 m:  (a) finite-element model
(modified from Burnett and Frind, 1987, figure 8c), and (b) numerical
ELLAM solution using CELDIS = 30 ........................................................      39

22. Three-dimensional simulation results for nonuniform-flow test case in
which αTH = αTV = 0.1 m:  (a) finite-element model (modified from
Burnett and Frind, 1987, figure 9b), and (b) numerical ELLAM solution
using CELDIS = 21................................................................................... 39



viii

TABLES

                                                                                          Page

1. ELLAM transport loop ......................................................................................... 22
2. Calling tree for ELLAM code, showing hierarchy of secondary subroutines for

transport calculations ......................................................................................... 23
3. Base-case parameters used in ELLAM simulation of solute transport in a one-

dimensional, steady-state flow system ................................................................ 26
4. Base-case parameters used in ELLAM simulation of transport from a continuous

point source in a three-dimensional, uniform, steady-state flow system .............. 30
5. Parameters used in ELLAM simulation of two-dimensional, steady-state, radial

flow case, showing range of values tested for selected numerical parameters ...... 32
6. Parameters used in ELLAM simulation of three-dimensional transport from a

point source with flow in the x-direction and flow at 45 degrees to x- and y-
axes ................................................................................................................... 34

7. Parameters used for ELLAM simulation of transport in a vertical plane from a
continuous point source in a nonuniform, steady-state, two-dimensional flow
system (described by Burnett and Frind, 1987) ................................................... 38

8. Execution times and storage requirements for MOC3D and ELLAM for selected
test cases............................................................................................................. 40

9. Formats associated with MOC3D print flags ....................................................... 50



1

A Three-Dimensional Finite-Volume Eulerian-Lagrangian
Localized Adjoint Method (ELLAM) for

Solute-Transport Modeling

by C.I. Heberton
T.F. Russell
L.F. Konikow
G.Z. Hornberger

ABSTRACT

This report documents the U.S. Geological
Survey Eulerian-Lagrangian Localized
Adjoint Method (ELLAM) algorithm that solves
an integral form of the solute-transport equation,
incorporating an implicit-in-time difference
approximation for the dispersive and sink terms.
Like the algorithm in the original version of the
U.S. Geological Survey MOC3D transport
model, ELLAM uses a method of characteristics
approach to solve the transport equation on the
basis of the velocity field.  The ELLAM
algorithm, however, is based on an integral
formulation of conservation of mass and uses
appropriate numerical techniques to obtain
global conservation of mass.  The implicit
procedure eliminates several stability criteria
required for an explicit formulation.
Consequently, ELLAM allows large transport

time increments to be used.  ELLAM can produce
qualitatively good results using a small number of
transport time steps.

A description of the ELLAM numerical method,
the data-input requirements and output options, and
the results of simulator testing and evaluation are
presented.  The ELLAM algorithm was evaluated
for the same set of problems used to test and
evaluate Version 1 and Version 2 of MOC3D.
These test results indicate that ELLAM offers a
viable alternative to the explicit and implicit solvers
in MOC3D.  Its use is desirable when mass balance
is imperative or a fast, qualitative model result is
needed.  Although accurate solutions can be
generated using ELLAM, its efficiency relative to
the two previously documented solution algorithms
is problem dependent.

INTRODUCTION

This report documents the Finite-
Volume Eulerian-Lagrangian Localized
Adjoint Method (ELLAM) (see Healy and
Russell, 1993), an alternative algorithm to the
U.S. Geological Survey (USGS) MOC3D
transport model that simulates three-

dimensional solute transport in flowing
ground water for a single dissolved chemical
constituent, and represents the processes of
advective transport, hydrodynamic dispersion
(including both mechanical dispersion and
diffusion), mixing (or dilution) from fluid
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sources, and simple chemical reactions
(including linear sorption and decay)
(Konikow and others, 1996; Kipp and others,
1998).  ELLAM solves a mass-conservative
integral form of the solute-transport equation
(Celia and others, 1990).  The code uses an
implicit method for dispersion calculations,
which allows for large time steps without
stability constraints.  ELLAM uses an
Eulerian-Lagrangian approach, first solving
for advective transport by tracking mass
through time and then solving a dispersion
equation on a grid fixed in space.  This is
particularly advantageous for advection-
dominated problems, as are typical of many
field problems involving ground-water
contamination, because the Eulerian-
Lagrangian approach will generate less
numerical dispersion than standard Eulerian
approaches using finite-difference and finite-
element methods.  ELLAM solves integral
equations and thus tracks mass associated
with fluid volumes, so that it conserves mass
locally and globally.  The original MOC3D
approach of inserting and tracking fluid
particles carrying concentration, which could
yield only an approximate mass balance, is
therefore not used in ELLAM.

ELLAM is integrated into the MOC3D
model, which is itself integrated with
MODFLOW-96, the USGS modular, three-
dimensional, finite-difference, ground-water
flow model (McDonald and Harbaugh, 1988;
Harbaugh and McDonald, 1996a and 1996b).
MODFLOW solves the ground-water flow
equation and the reader is referred to the
documentation for that model and its
subsequent packages and modules for
complete details.  In this report, it is assumed
that the reader is familiar with the
MODFLOW family of codes.  This report also
assumes reader familiarity with
documentation for MOC3D (Version 1), to
which this report is an extension.

MOC3D and ELLAM are offered as

general simulators that are applicable to a
wide range of field problems that involve
solute transport.  The user, however, should
first become aware of the assumptions and
limitations inherent in the simulator, as
described in this report and prior reports by
Konikow and others (1996) and Kipp and
others (1998).  In some situations, the model
results could be inaccurate or model operation
costly.  This report includes guidelines for
recognizing these situations and avoiding
such problems.

This implementation of MOC3D is
limited to fluid properties, such as density
and viscosity, that are uniform and constant,
and thus independent of concentration
values.  The types of reactions that are
incorporated into MOC3D are restricted to
those that can be represented by a first-order
rate reaction, such as radioactive decay, or
by a retardation factor, such as equilibrium,
reversible, sorption-desorption reactions that
are governed by a linear isotherm and
constant distribution coefficient.

The MOC3D computer program is
written in FORTRAN-77 and has been
developed in a modular style.  This
documentation contains a description of the
ELLAM algorithm used to solve the solute-
transport equation in MOC3D.  A description
of the data requirements, input format
specifications, program options, and output
formats is included in the appendixes.  This
report should be used in conjunction with the
original MOC3D documentation (Konikow
and others, 1996), which provides information
on all features of ELLAM previously existing
in MOC3D, including details on the method
of characteristics, code structure, and model
use.

Acknowledgments.  The authors
appreciate the helpful model evaluation and
review comments provided by USGS
colleagues R.W. Healy and K.L. Kipp.
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THEORETICAL BACKGROUND AND GOVERNING EQUATIONS

The ground-water flow and interstitial
velocity equations used in MOC3D are given
by Konikow and others, 1996, and will not be
repeated here.  Solution to the flow equation

provides the interstitial velocity field, which
couples the solute-transport equation to the
ground-water flow equation.

Governing Equation for Solute Transport

The solute-transport equation is that
presented in Konikow and others (1996, eq.
6):
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∂

∂
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(summation over repeated indices is under-
stood), where C is volumetric concentration
(mass of solute per unit volume of fluid,
ML–3), ρb  is the bulk density of the aquifer
material (mass of solids per unit volume of
aquifer, ML–3), C is the mass concentration of
solute sorbed on or contained within the solid
aquifer material (mass of solute per unit mass
of aquifer material, MM-1), ε is the effective
porosity (dimensionless), V is a vector of
interstitial fluid velocity components (LT-1), D
is a second-rank tensor of dispersion
coefficients (L2T-1), W is a volumetric fluid
sink (W<0) or fluid source (W>0) rate per unit
volume of aquifer (T-1), ′C is the volumetric
concentration in the sink/source fluid (ML-3),
λ is the decay rate (T–1), t is time (T), and xi
are the Cartesian coordinates (L).

The terms controlling sorption are
combined into a single parameter--the
retardation factor (Rf)--assumed to be constant

in time because on a linear isotherm, C C/ is
constant.  The retardation factor is defined as:

                R
C

Cf
b= +1

ρ
ε

.   (2)

An integral form of the solute-
transport equation, which is a statement of
conservation of mass over the domain of
integration, is the governing equation for this
finite-volume ELLAM approach.  Integration

against a “test function” is used to provide the
formulation of conservation of mass,
including treatment of cell or subdomain
boundary conditions and solute decay.

The test function effectively specifies
the domain of integration for the transport
equation by the portion of the space-time
domain where its value is nonzero.  On a
subdomain of integration, the test function
can be seen as an integration weight at each
point.  Varying the weight along streamlines
of the flow is a convenient mechanism to
provide solute growth or decay.

If we divide eq. 1 by Rf, multiply by a
test function u, integrate over time and space,
and assume Rf is constant in time, we have:

u
C
t

u
R

C C

u
R

C W u C t x

f

T

f

∂
∂
ε

ε ε

λε

( ) + ∇ ⋅ − ∇( )


− ′ + 


=

∫∫

∑

V D
0

0

Ω

d d

   

(3)

where Ω is the entire spatial transport

subdomain, and T is the end of the simulation
time period starting at time zero.

Equation 3 is integrated by parts using
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to yield the global equation,
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The Eulerian-Lagrangian aspects of
the method derive from the requirement that
the test function satisfy the adjoint equation,
∂ + ⋅ ∇ − =u

t R
u u

f∂
V λ 0 .  Thus, for the time

step from tn to tn+1, use u of the form

u t f t e t tn
x x, ,( ) = ( ) − −( )+λ 1
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characteristics of the retarded interstitial

velocity field.  Note that with u e t tn= − −+λ ( )1

(that is, f = 1) in the following for tn ≤ t ≤ tn+1,
and u = 0 otherwise, we arrive at a statement
of global conservation of mass for a time step:
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For a local conservation equation on each
finite-difference cell Ωl  in the transport
subdomain, let

            u t f t el l
t tn

x x, ,( ) = ( ) − −( )+λ 1

       (8)

where fl (x,tn+1) = 1 on Ωl and fl (x,tn+1) = 0
elsewhere.

We thus arrive at a system of local
ELLAM equations,
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The notations introduced in eq. 9 are
explained as follows.  First, supp f  denotes
the support of a function f, that is, the part of
its domain on which it is nonzero; for
example, supp W is the union of all finite-
difference cells containing a source or sink
having a nonzero flow rate.  If S is a subset of
the spatial transport subdomain Ω, then ∂S

denotes its boundary, and S* represents its
pre-image at time tn under advection along
characteristics; that is, x∈ S* whenever the

characteristic that starts at x at time tn and
tracks forward in time lands in S at time tn+1.

Next, Γ Ωn n nt t+ +≡ ∂ ×( )1 1,  denotes the

space-time boundary over the current time
step.  If B is a subset of Γn+1, the pre-image

B* can again be defined as a subset of Ω;

x∈ B* whenever the forward characteristic

from (x,tn) meets the outflow boundary
somewhere in B.  Finally, n is the outward
unit normal vector on the specified boundary,
and dx and ds signify differential volume and
boundary area, respectively.

Note that eq. 9 has the form of space-
time integrals of dispersion equations.
ELLAM can be viewed as a method of
characteristics, tracking mass along stream-
lines of the flow to accumulate data to the
right-hand side of the system of equations.
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Review of Assumptions

As described by Konikow and others
(1996), a number of assumptions have been
made in the development of the governing
equations.  Following is a list of the main
assumptions for review:
1. Darcy's law is valid and hydraulic-

head gradients are the only significant
driving mechanism for fluid flow.

2. The hydraulic conductivity of the
aquifer system is constant with time.
Also, if the system is anisotropic, it is
assumed that the principal axes of the
hydraulic-conductivity tensor are
aligned with the coordinate system of
the grid, so that the cross-derivative
terms of the hydraulic-conductivity
tensor are eliminated.

3. Gradients of fluid density, viscosity,
and temperature do not affect the

velocity distribution.
4. Chemical reactions do not affect the

fluid or aquifer properties.
5. The dispersivity coefficients are

constant over a flow time step, and the
aquifer is isotropic with respect to
longitudinal dispersivity.

As noted by Konikow and Bredehoeft
(1978), the nature of a specific field problem
may be such that not all of these underlying
assumptions are valid.  The degree to which
field conditions deviate from these
assumptions will affect the applicability and
reliability of the model for that problem.  If
the deviation from a particular assumption is
significant, the governing equations and the
numerical simulator may have to be modified
to account for the appropriate processes or
factors.

NUMERICAL METHODS

The notation and conventions used in
this report and in the computer code to
describe the grid and to number the nodes are
illustrated in figures 1 and 2.  The indexing
notation used here is consistent with that used
in the computer code for MODFLOW by
McDonald and Harbaugh (1988), although
not the notation used in some sections of their
report.  Our indexing notation maintains
conformity between the text of this report and
the FORTRAN code in MOC3D, and the
index order corresponds to an x,y,z sequence.
Our notation, however, differs from that used
in some other ground-water models in that the
x-direction is indexed by “j” and increases
from left to right along a row to indicate the
column number.  Our use of ∆x and ∆y is

synonymous with the use of ∆r and ∆c,
respectively, by McDonald and Harbaugh
(1988).  The y-direction is indexed by “i” and
increases from the top of the grid to the
bottom within a column to indicate the row
number.  Thus, in a map view of any one
horizontal layer, as illustrated in figure 1, the
node representing a cell in the first row and
first column of the grid would lie in the upper
left corner of the grid.

The z-direction represents layers and
is indexed by “k.”  As indicated in figure 2,
the first layer (k = 1) in a multi-layer grid
would be the top (or highest elevation) layer.
The saturated thickness of a cell (bj,i,k) is
equivalent to ∆z.
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EXPLANATION

j,i,kj-1,i,k j+1,i,k

j,i-1,k

j,i+1,k

xj

 i

y

 ∆xj

∆yi

COLUMNS

R
O

W
S

  Node of finite-difference cell

∆xj= ∆rj = cell dimension in row direction

∆yi = ∆ci = cell dimension in column direction

Figure 1.  Notation used to label rows,
columns, and nodes within one layer (k) of a
three-dimensional, block-centered, finite-
difference grid for MOC3D (from Konikow and
others, 1996).

k

z

∆zk = bk

LA
Y

E
R

S

Figure 2.  Representative three-dimensional
grid for MOC3D illustrating notation for
layers (from Konikow and others, 1996)

Ground-Water Flow Equation

A numerical solution of the three-
dimensional ground-water flow equation is
obtained by the MODFLOW code using
implicit (backward-in-time) finite-difference
methods.  Successful use of MOC3D requires
a thorough familiarity with the use of

MODFLOW.  Comprehensive documentation
of MODFLOW is presented by McDonald and
Harbaugh (1988), Harbaugh and McDonald
(1996a and 1996b), and the various reports
for additional implemented packages and
modules.

Average Interstitial Velocity

The solution of the transport equation
requires knowledge of the velocity (or specific
discharge) field.  Therefore, after the head
distribution has been calculated for a given
time step or steady-state flow condition, the
specific discharge across every face of each
finite-difference cell within the transport
subgrid is calculated using a finite-difference
approximation (see Konikow and others, 1996).

The mass-tracking algorithm requires
that the seepage velocity at any point within a
cell be defined to compute advective
transport.  It is calculated at points within a
finite-difference cell based on linearly
interpolated estimates of specific discharge at
those points divided by the effective porosity
of the cell (see Konikow and others, 1996).
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Solute-Transport Equation

The mathematical properties of the
transport equation vary depending upon
which terms in the equation are dominant in a
particular system.  Where solute transport is
dominated by advection, as is common in
many field problems, the transport equation
resembles a hyperbolic type of equation
(similar to equations that describe the
propagation of a wave or of a shock front).  In
contrast, where a system is dominated by
dispersive and diffusive fluxes, such as might
occur where fluid velocities are relatively low
and aquifer dispersivities are relatively high,
the transport equation becomes more

parabolic in nature (similar to the transient
ground-water flow equation).  Because
system properties and fluid velocity may vary
significantly, the dominant process (and the
mathematical properties of the governing
equation) may vary from point to point and
over time within the domain of simulation.
The challenge for a numerical solution
method is to represent solute fronts without
introducing either erroneous oscillations or
nonphysical dispersion, and to do so without
requiring a cost-prohibitive use of computer
resources.

ELLAM

The ELLAM method advances in time
by considering the space-time domain
Ω×( )+t tn n, 1 .  Part of this domain flows out

of the transport subdomain during the time
step, and separate outflow boundary equations
below address this part.  The remaining part is
modeled using cell integral equations that do
not contain outflow terms.  The next two
subsections present these equations in turn.
Overall, they can be coupled in such a way
that the outflow concentrations contribute to
the right-hand side of the system of cell
integral equations.

Like the algorithms in the previous
versions of MOC3D, ELLAM approximates
total solute flux across the transport
subdomain boundary by the advective flux;
that is, the dispersive flux is neglected.  This
is not required by ELLAM methods in general,
but rather is a feature of this particular
implementation.  As a result, boundary-face
concentrations are not coupled to cell-center
concentrations through a dispersive
concentration gradient, simplifying the
separation of outflow boundary equations
from cell integral equations.  All mass
moving across the transport subdomain

boundary can be tracked by the advective
algorithm, and at outflow boundaries, this
mass provides data for the outflow boundary
equations.  Solutions of these outflow
equations, together with user-input inflow
concentrations, appear on the right-hand side
of the cell integral equations, which represent
local mass conservation on finite-difference
cells of the transport subdomain.

ELLAM approaches the hyperbolic-
parabolic nature of the solute-transport
equation by combining a method of
characteristics technique for advection with a
backward Euler in time and centered
differences in space solution to a diffusion
equation.  The following sections describe
key elements of the numerical methods in
more detail.

Cell Integral Equations

Taking the conservation of mass
equation for each cell (eq. 9), we approximate
the total boundary flux with advective flux
(that is, the dispersive flux is taken to be zero)
and the dispersion time integral with a
backward Euler formulation, and then
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rearrange terms.  The system of equations to
be solved is then:

ε ε
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where Ωl
* means the pre-image in the

spatial domain at tn of Ωl  at tn+1;

Γ Ωn n nt t+ +≡ ∂ ×( )1 1,  is the space-time

boundary at time step n+1; and
supp f x | f(x)≡ ≠{ }0 .  These integral

equations are solved for Cn+1, the concentra-
tion at the new (n+1) time level at each cell
center.  Note that the right-hand side of eq. 10
consists of advective mass contributions from
storage (that is, advection of mass in the
domain at the start of the time increment),
inflow boundaries, and sources.  This is
illustrated schematically for a simple case
having constant velocity in figure 3, which
shows how mass is advected into cell Ωl  at
time level tn+1 from an inflow boundary, from
a fluid source in a nearby cell, and from the
mass present at time level t in nearby cells.

Outflow Boundary Equations

The integral in eq. 7 expressing mass
crossing the transport subdomain boundary
during a time step is:
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Considering just the outflow portion of the
boundary, this becomes

1
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(12)
where total flux across the boundary is now
approximated by advective flux.

We index the outflow boundary faces
with ll and define the following test functions:

u

e

ll

t tn

n
ll

=
















− −( )+

∂

λ 1

0

on characteristics from  
at time level  into boundary 

         area ( ) at any time 
         during time step

otherwise. (13)

Ω

Ω
        

           

The mass across outflow boundary face ll is
the mass stored at the previous time level that
flows across the face, together with any
inflow and source mass that both enters the
transport subdomain and leaves through face
ll during the time step.

1 2 3 4 5

tn+1

nt

CELL

Ω l
SOURCE

CELL

INFLOW
BOUNDARY

TI
M

E
 L

E
V

E
L

Figure 3.  Schematic representation (for a
simple case having constant velocity)
showing how mass is advected into cell Ωl at
time level tn+1 from the inflow boundary, from
a fluid source in cell 1, and from storage at
time level tn in cells 1 and 2.
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Taking u = ull on the right-hand side
of eq. 12, and including those terms from eq.
7 that are appropriate in the context of the

outflow boundary, we can write three terms
representing mass contributions from storage,
inflow, and sources, as follows:
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(14)

where ∂( )Ω ll  is a discretized portion of the

boundary face, and ∂( )Ω ll
*  is its pre-image, in

the manner described following eq. 9.  The
advection of mass to an outflow boundary is
illustrated schematically for a simple case
having constant velocity in figure 4, where
mass is advected to an outflow boundary at
time level tn+1 from an inflow boundary, from
a fluid source in a nearby cell, and from the
mass present at time level t in nearby cells.

1 2 3 4 5

t n+1

nt

CELL

SOURCE CELL

INFLOW
BOUNDARY

TI
M

E
 L

E
V

E
L

OUTFLOW
BOUNDARY

Figure 4.  Schematic representation showing
how mass is advected to an outflow boundary
at time level tn+1 from the inflow boundary,
from a fluid source in cell 3, and from storage
at time level tn in all five cells.

ELLAM equations are a formulation of
mass conservation on each cell.  Therefore,
approximations to concentrations result that
conserve mass locally (on each finite-

difference cell) and globally (on the entire
transport subdomain).

Mass Tracking

For each cell in the fixed finite-
difference grid, the integrals on the right-hand
side of eq. 10 represent solute mass advected
into the cell during the time step from storage
(that is, advection of mass in the domain at
the start of the time increment), the transport
subdomain boundary, or a fluid source,
respectively.

Advection in flowing ground water is
simulated by mass tracking along the
characteristic curves determined by the
seepage velocity.  Calculation of advective
movement during a flow time step is based on
the specific discharges computed at the end of
the step.

As in MOC3D, tracking is performed
using linear interpolation of velocity in the
direction of the component of interest and
piecewise-constant interpolation in the other
two directions.  The approach is to solve a
system of three ordinary differential equations
to find the characteristic curves [x = x(t),
 y = y(t), and z = z(t)] along which fluid is
advected:         

                      

dx

dt

V

R
x

f
= (15)
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dy

dt

V

R
y

f
=

  
   (16)

                           

dz

dt

V

R
z

f
=

                         
(17)

This is accomplished by introducing a
set of moving points that can be traced within
the stationary coordinates of a finite-
difference grid.  Each point corresponds to
one characteristic curve, and values of x, y,
and z are obtained as functions of t for each
characteristic (Garder and others, 1964).
Each point moves through the flow field by
the flow velocity acting along its trajectory.

The ELLAM equations, eqs. 10 and 14,
suggest that mass is tracked backwards along
characteristics to the pre-image of each cell or
boundary face.  It is not possible, however, to
exactly locate all of the mass at the previous
time level by backtracking a finite number of
points (see figure 5).  In order to achieve mass
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When a solute subject to decay
enters the aquifer through a fluid source, it is
assumed that the fluid source contains the
solute at the concentration specified by ′C .
MOC3D allows decay to occur only within
the ground-water system, and not within the
source reservoir.  In other words, for a given
stress period, ′C  remains constant in time.
If the problem being simulated requires that
the solute in the source fluid itself undergo
decay, then the source code will have to be
modified.

Numerical Integration

The numerical treatment of each
term in eqs. 10 and 14 will next be

discussed.  The j,i,k subscripts for a cell Ωl

will denote the spatial finite-difference grid
indexing, as discussed previously in the
section “Numerical Methods.”

The equations are first divided
through by porosity, which is represented by
piecewise constants in space and time.  This
is valid because there are no spatial
derivatives of porosity in the local ELLAM
equations.

Dispersion

Time integration is accomplished
using a one point in time backward Euler
rule.  Spatially, a one point integration rule
with a seven point stencil is used:
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where m = 1,2,3 is a summation index for the
dispersion term.  Finite-difference
approximations to the space derivatives in the
dispersion integral are calculated using
centered differences as in MOC3D, but with
ELLAM they are modified for varying grid
dimensions.  (See Konikow and others

(1996), p. 64 for εbD
C

x
m

m

∂
∂

 expansion.)

Mass Storage at New Time Level

The quantity mass/porosity in a cell at
the new time level tn+1 is expressed using the
trapezoidal rule for integration, formulated
over each cell octant.  Concentrations at
octant corners are weighted averages of

neighboring node concentrations, determined
by trilinear interpolation.

For each octant,
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=

=

=
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where for an interior octant, nbr = neighbor
and nbr is one of the eight grid nodes between
which concentration varies trilinearly.  In the
case of a boundary octant, a boundary face
value is needed for calculation, and is taken to
be the following:
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•  Inflow: user input;
•  No flow: same as associated interior node;

and
•  Outflow: calculated using cell parameters,

boundary flow rate, and mass tracked
across boundary during transport time
step.

One important implication of the
above procedure, which is designed to be
mass conservative, is that the concentration
calculated and reported (in the output) for the
location of the block-centered node, Cj,i,k,
represents the estimated concentration at that
point and not the average concentration in the
cell.  Thus, unlike many other numerical
methods, Cj,i,k multiplied by the volume of
water in the cell would not necessarily equal
the solute mass in the cell.

Coefficients calculated by ((1/8) x

octant volume x nodal weight) for all nodes
neighboring a cell comprise the storage
matrix entries for the equation for each cell.
Boundary terms are put on the right-hand side
of the equation because all boundary face
concentrations are determined before the
solution of the interior equations.

It should be noted that linear
interpolation in the vertical dimension is
approximate in the case where adjacent cells
in the same layer of the transport subdomain
have varying thicknesses, as is allowed by
MODFLOW.  Extreme variations could affect
accuracy of the solution.

For an interior cell with all neighbors
active and using b at time n+1:
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Mass Storage at Old Time Level

The total mass advected into each cell
during a transport time step that was already
stored within the system at the old time level
is needed for the right-hand side of the
ELLAM equation.  Numerically, this is
accomplished by tracking mass forward from
the old time level, n, along characteristics.
Each cell is divided into subcells determined
by parameters NSC, NSR, NSL, specifying
the number of subcells in the column, row,
and layer direction, respectively.  The center
of each subcell is tracked through the time
step under advection.  Depending on the exact
location of this point in the destination cell at
the new time, all of the mass in the subcell
may or may not also be found in that
destination cell.  In order to mitigate the
effects of unwarranted mass lumping, subcell
mass is distributed among cells neighboring
the destination cell using the “approximate
test functions,” wl, described below.  The
value of wl at the subcell center destination
point is the fraction of subcell mass to be

distributed to cell Ωl.
This yields the formulation,

e C d

e
x y b

NSC NSR NSL

w p C p

t n

t

j i k

j i j i k

l
f

l

−

−

≈

( )( )( )





( ) ( )( )


∫

∑ ∑

λ

λ

∆
Ω

∆ ∆ ∆

x*

  

        

, ,

, ,

p=subcell 
   center

(21)

where summation runs through all subcells of
each cell in the transport subdomain, and p f is
the image of p under forward tracking to the
new time level.

Approximate Test Functions

An approximate test function is defined
for each active cell for the purpose of
distributing advected mass among neighbor-
ing cells.  The designation “approximate test
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function” is given because the graph of this
function looks like a characteristic (indicator)
function with slanted sides extending into
adjacent cells, whereas the test functions
described in the derivation of the governing
equation are exactly characteristic functions
in space at time tn+1.  Examples of
approximate test functions are illustrated in
figure 7 for one direction.  An approximate
test function is determined by NSC, NSR, and
NSL, the proximity of the transport
subdomain boundary, and the active status of
neighboring cells.  Mass is not split across the
transport boundary or into inactive cells.

We define local reference coordinates
ˆ, ˆ, ˆx y z  centered around cell Ωl with node

indices j,i,k by

                   x̂
x x

x
j

j
=

−
∆

(22)

and similarly for ŷ  and ˆ.z   For ˆ, ˆ, ˆ ,x y z ∈ ( )−
1

2

1

2
,

the corresponding point (x, y, z) is in cell Ωl .
For an interior cell on a uniform grid with all
surrounding cells active, one approximate test
function is

        w x y z f x g y h zjik ˆ, ˆ, ˆ ˆ ˆ ˆ( ) = ( ) ( ) ( ) (23)

where
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Figure 7.  Examples of spatial distribution of
approximate test functions (wl) for selected
one-dimensional cases.  Vertical ticks
represent cell boundaries.
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and similarly for g and h.  This function, in
one direction on a uniform grid, is shown
graphically in figures 7a and 7b.  Approxi-
mate test functions in each direction are
multiplied together (see eq. 23) to get the test

functions used to distribute the advected
mass.

In the general case of a possibly
nonuniform grid, the single variable functions
f, g, and h are given by:
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ˆ

ˆ             ( )

with g and h defined analogously, where for
points outside of Ωl , ˆ, ˆ, ˆx y z  must be defined
according to the scale of the appropriate cell;
for example, in the neighboring cell having
coordinates j-1, we have

ˆ , , ˆx x
x x

x
j

j
∈ ( ) = − +

−
− − −

−
3

2
1

2
1

1
1

∆
.  This

function is shown graphically in figure 7c.

In practice, to evaluate all test
functions at a given point in any Ωl , use cell
coordinates j,i,k and reference coordinates
ˆ, ˆ, ˆ ,x y z ∈ ( )−1

2
1

2  for that point within that cell.
Then eqs. 25 are used to evaluate f, g, h and
eq. 23 to find wj i k, , .  If ˆ, ˆ, ˆx y z > 0, there are

potentially seven more nonzero test functions,
with values given by:

     w f x g y h zj i k+ = −( )1 1, , ( ˆ) ( ˆ) ( ˆ) (26a)

     w f x g y h zj i k, , ( ˆ) ( ˆ) ( ˆ)+ = −( )1 1 (26b)

     w f x g y h zj i k, , ( ˆ) ( ˆ) ( ˆ)+ = −( )1 1 (26c)

w f x g y h zj i k+ + = −( ) −( )1 1 1 1, , ( ˆ) ( ˆ) ( ˆ) (26d)

w f x g y h zj i k, , ( ˆ) ( ˆ) ( ˆ)+ + = −( ) −( )1 1 1 1 (26e)

w f x g y h zj i k+ + = −( ) −( )1 1 1 1, , ( ˆ) ( ˆ) ( ˆ) (26f)

w f x g y h zj i k+ + + = −( ) −( ) −( )1 1 1 1 1 1, , ( ˆ) ( ˆ) ( ˆ) (26g)

Analogous expressions hold for reference
coordinates with different signs.  Test
functions for neighboring cells are evaluated as
in eq. 26, and wl ′ ≡ 0 for all ′l  indexing cells
not adjacent to Ωl .

The sum of the values of the test
functions at any point in the transport domain
is one, thus conserving mass for the integral
equation.  This may be expressed as

w xl
l

( ) =∑ 1.

The test function component in the
direction of the boundary extends from the
center of a boundary cell to the boundary face
with the value of one.  Thus, there is no
splitting of mass across the boundary.

There is no test function associated
with an inactive cell.  In a cell adjacent to an
inactive cell, the value of the test function that
would normally be assigned to the inactive cell
is distributed proportionally to other test
functions that are nonzero at that point.  All
test functions are zero in inactive cells.

Extreme variation in cell thickness
among neighboring cells in a layer may
adversely affect model results.  In this case,
linear interpolation of concentration in the
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vertical direction, or approximate distribution
of advected mass, may be inaccurate.

Source Integral

Source and sink integrals correspond
to the last term in eq. 10, divided through by
porosity as noted above.  In general, MOC3D
assumes that a source or sink is distributed
uniformly over the finite-difference cell
containing it.

For a source, a time step t tn n, +( )1  is
discretized into NT uniform sub-time steps,
t t t t t t t m NTn

NT
n

m
n

0
1= = = ++,  ,  ∆  for m

= 1,2,...,NT-1.  Inflow of mass is integrated
using the compound trapezoid rule.  In effect,
this means that the amount of mass associated
with a sub-time step ∆t/NT is introduced at

each of the times t t tNT1 2 1, ,..., − , and half this
amount is introduced at each of t0  and tNT .
Starting from its designated time, each packet
of mass is tracked forward to time tn+1 and
accumulated in the same manner as non-source
mass that began the time step already in the
transport subdomain.

This accumulation for the last term in
eq. 10 is done with the following integration
for cell Ωl .  To account for all source mass
that flows into Ωl  during the time step, all
sources that intersect the support of the space-
time test function associated with Ωl  are
included.  Note that the integration determines
the source mass flowing into Ωl , not the
source mass originating in Ωl .  Multiple
sources within the same cell are summed.  This
yields:

e C
W

R
dt d

e
T

NSC NSR NSL
w p C

Q
R

t t

fu W

jik

t t m
l

f
s

s

fsm

NT

source
p subcell

center

n

l

ALL
SOURCE
CELLS

n
m

− −( )
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− −( )
=

=

+

+

′ ≈

( ) ′

∑∫∫

∑ ∑∑∑

λ

λ

ε

1

11

0

x
supp supp 

 
( ) ( )( )

∆           
(27)

where summation runs through all subcells of
each source cell in the transport subgrid; p f is
the image of p under forward tracking to the
new time level; tm represents the time during
the time step at which discretized source mass
enters the system (t0 = tn, tNT  = tn+1, tm = tn +
∆ t m/NT); and ∆ ∆T t NTm =  or
∆ ∆T t NTm = 2  if m equals 0 or NT, s indexes
all source terms within the source cell of
interest, and Qs is the volumetric flow rate
associated with the fluid source having a
concentration ′Cs .  Note that Qs equals Ws
multiplied by the volume of the source cell.

Sink Integral

Analytically, the domain of integration
is the support of the space-time test function
for a cell Ωl intersected with any sink cells.
To approximate, this term is only formulated
if cell Ωl contains a sink, and the sink
concentration is assumed to be the average
nodal concentration for the transport time

step, with the exception of a sink related to
evapotranspiration, where sink concentration is
taken to be zero.  Integration rules are a one
point in space and a one point backward Euler
in time.  Multiple sinks within a sink cell are
summed.  The averaging of concentration
results in this integral approximation
contributing to both the left and right hand
sides of the equation for sink cell Ωl  with
coordinates j,i,k:

e C
W

R
dtd
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d
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(28)
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where the subscript ET refers to evapotrans-
pirative flux.

Inflow Boundary Integral

Inflow boundary integrals correspond
to the next-to-last term in eq. 10, divided
through by porosity.  For an inflow boundary,
as for a source, a single time step is
discretized into a number of sub-time steps
determined by parameter NT.  The composite
trapezoidal rule is applied in time.  At each
sub-time step, inflow mass is spatially
discretized, tracked, and accumulated, just

like mass already in the system at the start of
the transport time step, but for the shorter
interval.  The only difference in the treatment
of the inflow boundary from the treatment of
the source is that only the two-dimensional
boundary face is discretized, whereas for a
source, the entire cell is discretized.  For a cell
Ωl , the integration is performed over the
intersection of the space-time test function for
that cell and the transport subdomain
boundary; that is, all mass entering through the
boundary and advected to Ωl  during the time
step is accumulated to the right-hand side of
local equation l, yielding:

e C
R

dtd

e T
ref area

w p C
Q

R

t t

fu

t t m
l
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center
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faces

              
 (29)

where ref area = NSC×NSR, NSC×NSL, or
NSR×NSL, depending on plane of face; p f is
the image of p under forward tracking to the
new time level; Qinflow is the volumetric rate
of inflow across the face; and tm and ∆Tm are
defined in eq. 27.  Summation runs over each
p on the transport subgrid boundary, with the
approximate test function wl used to select
mass advected to Ωl .

Outflow Integrals

Concentration is calculated at each
outflow boundary face using cell parameters,
velocity information from MODFLOW, and
the amount of mass tracked across the cell
boundary determined by MOC3D.

On the left-hand side of the system of
boundary equations (eq. 14) is an integral
approximated using a one point in space, one
point backward Euler in time formulation.
This time approximation eliminates the
exponential factor, as follows:

e C
R

dtd
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d
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t t
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∆
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V
s

V
s

n

n

( )

where ll is the index for boundary faces; and
Qoutflow  is determined using the outflow
velocity calculated from MODFLOW output
and cell parameters.  The concentration on face
ll is the unknown in the boundary equation.

The right-hand side boundary integrals
are constructed from the mass contributions
tracked across the boundary from interior cells,
sources, and inflow boundaries during the
transport time step.  All mass associated with a
tracked point that reaches the outflow
boundary at any time during the time step is



18

considered to leave the transport subdomain.
Test functions are evaluated to distribute mass
among neighboring boundary outflow faces.

The three terms on the right-hand side
of eq. 14 are approximated in a manner
analogous to eqs. 21, 29, and 27, respectively,
where now outflow boundary integrals,
instead of cell integrals, are being considered.
We define test functions Wll associated with
outflow boundary faces analogous to the test
functions Wl for cells.  Thus, Wll (p f) will be

nonzero if, tracking p f forward from sub-time
step tm, p f reaches the given outflow boundary
face during time interval [tm, tn+1].  Spatially
along the boundary, Wll will have a profile
analogous to those in figure 7, thus distributing
mass to neighboring boundary faces.
Substituting the right-hand side of eq. 30 for
the left-hand side of eq. 14, approximating the
right-hand side of eq. 14 as described above,
and using a trapezoidal rule in time and a cell-
midpoint rule in space, we obtain:
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We thus have a system of equations
represented by a diagonal matrix, to be solved
for outflowC .

Accuracy Criteria

An accuracy criterion incorporated in
MOC3D constrains the distance that solute
mass is advected during each transport time
step.  A restriction can be placed on the size
of the time step to ensure that the number of
grid cells a point moves in the x-, y-, or z-
directions does not exceed some maximum.
The simulator allows the user to specify this
maximum (named CELDIS in the code and
input instructions).  This translates into a
limitation on the transport time-step length.  If
the time step used to solve the flow equation
exceeds the time limit, the flow time step will
be subdivided into an appropriate number of

equal-sized smaller time increments for
solving transport.

For advective transport, a mesh
density sufficient so that at least four grid
nodes are represented across a solute front (or
zone of relatively steep concentration
gradient) is needed for good accuracy.
Similarly, for advecting a peak concentration,
the area of the peak should be represented
across at least eight nodes of the grid for good
accuracy.  In such cases, testing suggests that
a peak concentration value can be advected
with a very small dissipation of the maximum
concentration per time step for a variety of
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Courant numbers.  With insufficient mesh
density, a peak will dissipate rapidly for an
initial period of time during which it spreads
out and oscillates; thereafter, the numerical
decay slows and the oscillations do not
worsen.  A fine discretization of tracked mass
(large NSC, NSR, NSL) reduces the rate of
peak decay when modeling with many
transport time steps (see sections “Special
Problems” and “Input Parameter Values”).
Regardless of the solution accuracy, global
mass is conserved.

The accuracy of the dispersion
calculation is governed in part by the
accuracy of the central-difference
approximations to the space derivatives,
meaning a finer mesh will result in better
accuracy.  The implicit formulation for the
solution of the dispersion equation is
unconditionally stable.  This allows for large
time steps during the simulation.  Because
ELLAM solves for advection along
characteristics, thus avoiding large values of
the second time derivative of the solution at
passage of a steep front, error in calculation of
the time derivative may be expected to be
small compared to a standard finite-difference
solution to an advection-dispersion equation.
Some dependence of the accuracy of the

dispersion calculation on the size of the time
step is retained, however.  Note that stability
does not imply accuracy; accuracy of the
solution to the dispersion equation decreases
as the time step size increases.  On the other
hand, modeling with many time steps in order
to resolve dispersion to the desired accuracy
could result in a loss of peak to numerical
dispersion inherent in the treatment of
advection, an effect that can be reduced by
increasing NSC, NSR, and NSL.

One additional difficulty encountered
with implicit temporal differencing results
from the use of a symmetric spatial
differencing for the cross-derivative terms of
the dispersion tensor.  This creates a potential
for overshoot and undershoot in the calculated
concentration solution, particularly when the
velocity field is oblique to the axes of the
grid.  A remedy for excessive overshoot and
undershoot is to refine the finite-difference
mesh. This may, however, increase simulation
times.

ELLAM can produce qualitatively
good results in a small number of time steps,
provided the NT value is sufficient to yield
smooth distribution of mass along the inflow
path.  (See sections “Special Problems” and
“Input Parameter Values”.)

Mass Balance

As described by Konikow and others
(1996), global mass-balance calculations are
ordinarily performed to help check the
numerical accuracy and precision of the
solution.  Modifications to the previously
described mass-balance calculations have
been implemented to assure consistency with
the implicit algorithm.  In calculating the
cumulative mass flux out of the system, the
explicit procedure assumes that the
concentration associated with a fluid sink is
Cj i k

n
, , , the node concentration at the beginning

of the time increment (see Konikow and
others, 1996, eq. 66).  The ELLAM code

assumes that the concentration associated
with a flux in or out of the system is the
average nodal concentration during the time

increment, C Cj i k
n

j i k
n

, , , ,+( )+1 2 .

ELLAM conserves mass globally,
regardless of the accuracy of the solution.
Mass balance errors of less than 10-4 percent
can generally be expected (this depends on
the value of approximate zero, which is
FORTRAN variable AZERO in the code,  and
solver tolerance, both of which are currently
predefined in the code and cannot be specified
in the input data).
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Special Problems

Fronts too sharp for the given mesh
density (grid spacing) may produce negative
concentration values and/or numerical
dispersion.  For the mass in one cell to be
positive, the mass in the adjacent cell to be
zero, and concentration to vary linearly, the
cell with zero mass may show a negative
concentration.  For non-integer Courant
numbers, numerical dispersion results from
the solution algorithm being insensitive to the
exact location of advected mass in a
destination cell.  On a well-discretized front,
these effects are minimal due to error
cancellation.  Thus, solving on a fine grid
with few time steps may mitigate these
difficulties.

Numerical dispersion may also result
from tracking subdivisions of mass that are
too coarse.  The level of discretization of
mass tracked and accumulated to the right-
hand side vector is determined by parameters,
NSC, NSR, and NSL.  These parameters
define the number of subcells in the column,
row, and layer direction, respectively.  To
increase the resolution of mass tracking under

advection, it may be desirable to increase the
values of these parameters.

Parameter NT defines the number of
sub-time steps per transport time increment.
NT should be large enough so that all cells in
the path of flow from the inflow boundary or
source to the location of the front at the end of
the time step receive incoming mass.  This is
to avoid artificial mass lumping.  See section
“Input Parameter Values.”

To avoid non-physical accumulation
of mass at an outflow boundary, the spatial
NS parameter in the direction normal to the
boundary must be such that 1/(2NS)<Courant.
This is to ensure that at least some mass is
calculated by the algorithm as reaching the
boundary during a time step.

Extreme variation in cell thickness
among neighboring cells in a layer may
adversely affect model results.  This is caused
by the inherent geometric inconsistency in the
vertical direction between adjacent cells that
have different thicknesses.  (Also see
McDonald and Harbaugh, 1988, figure 9 and
related discussion.)

Review of ELLAM Assumptions   

The assumptions that have been
incorporated into the ELLAM simulator are
very similar to those for MOC3D Version 1
and Version 2.  They are relevant to both
grid design and model application.  Efficient
and accurate application of ELLAM requires
the user to be aware of these assumptions.
Therefore, the user should review the
description of these items as presented by
Konikow and others (1996).

Transport subgrid boundaries are
assumed to be far enough from the plume
that any errors in the treatment of the
boundaries will not have a significant effect
on the solution.  The boundary condition is
that the normal component of the

concentration gradient on the boundary is
zero, meaning there is no dispersive flux
across the transport subdomain boundary.

Unlike the previous MOC3D explicit
and implicit difference approximations,
ELLAM does not require a uniform grid
spacing within the transport subdomain.
Likewise, there is no longer a formal
restriction on variations in the product of
porosity and thickness within the
subdomain.
ELLAM does assume:

•  Concentration at an outflow
boundary face at the new time
level is well approximated by the
mass crossing the face during the
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time step divided by the fluid
volume across the face.

•  Mass in or out of the transport
subdomain during a time step via
a source or sink cell is well
approximated by the average
nodal concentration during the

time step times the fluid volume
through the source or sink.  Mass
loss in flow through upstream
sinks is negligible.

•  Cell thicknesses are smoothly
varying within a horizontal layer.

COMPUTER PROGRAM

ELLAM is implemented as a package
for MODFLOW.  ELLAM uses the flow
components calculated by MODFLOW to
compute velocities across each cell face in the
transport domain.  The computed velocities
are used in an interpolation scheme to move
each mass-bearing volume a distance and
direction with time to represent advection.
An integral formulation of conservation of
mass is applied, yielding a dispersion
equation including boundary fluxes, fluid
sources, and decay.

Because the model is based on the
assumption that the fluid properties (such as
density and viscosity) are constant and
uniform and independent of changes in
concentration, the head distribution and flow
field are independent of the solution to the
solute-transport equation.  Therefore, the flow
and transport equations can be solved
sequentially, rather than simultaneously.
Because transport depends on fluid velocity,
which is calculated from the solution to the
flow equation, the flow equation must be
solved first.

A separate executable version of
MODFLOW, which is adapted to link with
and use the ELLAM package, must first be
created to run the simulations. MOC3D is
written in standard FORTRAN-77, and it has
been successfully compiled and executed on
multiple platforms, including Pentium-based
personal computers, Macintosh personal
computers, and Data General, Sun, and
Silicon Graphics Unix workstations.
FORTRAN compilers for each of these
platforms vary in their characteristics and
may require the use of certain options to

compile MOC3D successfully.  For instance,
the compiler should initialize all variables to
zero.  Depending on the size of the X-array
(defined by LENX in the MODFLOW source
code), options to enable the compiler to
handle large-array addressing may be needed.
Most real variables in MOC3D are defined as
single precision variables in the FORTRAN
code.  In our experience, use of double-
precision definitions for these variables has
not been necessary.

Implementing ELLAM requires the use
of a separate “name” file that contains file
names, similar to the one used in
MODFLOW.  The principal ELLAM input
data (such as subgrid dimensions, hydraulic
properties, and particle information) are read
from the main ELLAM data file.  Other files
are used for observation wells, concentrations
in recharge, and several input and output
options.  Detailed input-data requirements and
instructions are presented in Appendix A.
ELLAM input requirements differ from those
of MOC3D in that NSCEXP, NSREXP,
NSLEXP, and NTEXP values must be
provided, whereas parameter values related to
fluid particles are omitted.

The input data set used for the first
test problem (involving one-dimensional
steady flow) is included in Appendix B to
provide the reader with an illustrative
example.

MOC3D output is routed to a main file,
separate from the MODFLOW main output file,
and optionally to additional output files.
Appendix C contains output from the example
input data set contained in Appendix B.
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Program Segments

MOC3D input and output utilizes the
standard MODFLOW array reading and
writing utilities as much as possible.
Konikow and others (1996) describe briefly
each of the subroutines in MOC3D that are
used for ten different categories of functions.
Discussion related to table 4 in that report
(p. 37) is to some extent irrelevant, inasmuch
as it pertains to particle manipulations.
Several existing MOC3D subroutines were
modified.  ELLAM routines have been added
to the main MOC3D transport time loop.
Table 1 provides a list of the primary
subroutines and their descriptions.  Table 2
contains secondary subroutines and the
calling tree.  The ELMOVE routine in
ELLAM uses a linear velocity interpolation.
Output routines from earlier versions of the
code are retained.   A flow chart of the
program segments controlling the transport
calculations for ELLAM is shown in figure 8
(also see figures 12 and 13 of Konikow and
others, 1996).

Dispersion coefficients are calculated
at cell faces.  To improve efficiency, the
dispersion coefficients are lumped with the
porosity, thickness, and an appropriate grid
dimension factor of the cell into combined
parameters called “dispersion equation
coefficients.”  Here, the ELLAM version of
subroutine DSP6FM has been modified to
calculate the distance between cell nodes in
the column or row direction using the newly
implemented variable grid dimensions, and to
use an appropriate grid dimension factor for
the ELLAM integral formulation of the
problem.  For example, the dispersion
equation coefficient for the j+1/2,i,k face in the
column direction is

2 1 2

1

( ) / , ,εbD

x x
xx j i k

j j

+

++∆ ∆            (32)

These combined coefficients are the ones that
are written to the output files.

Table 1. ELLAM transport loop

Subroutine Description

ELLBDY Create boundary arrays;  Track inflow
mass, and accumulate to RHS
storage or outflow integral

BDYINT Track boundary layer mass, and
accumulate to RHS storage or
outflow integral;  Calculate LHS
storage coefficient, and save value if
inflow or outflow face (1st transport
time step)

ELLLHI Track interior mass, and accumulate
to RHS storage or outflow integral;
Calculate LHS storage coefficient (1st

transport time step)

ELLDIS Build LHS dispersion matrix (1st

transport time step)

ELLSRC Sink: accumulate to dispersion matrix
(1st transport time step) and RHS;
Source: track source mass;
accumulate to RHS storage or
outflow integral

ELIUPD Move inflow boundary concentrations
to solution vector

ELLOUT Outflow and inflow processing: solve
outflow boundary equations;
accumulate inflow and outflow
boundary mass to RHS; accumulate
boundary mass for mass balance

CONVERT Convert storage plus dispersion matrix
into SLAP column format (1st

transport time step)

SMOC5I Convert storage matrix into SLAP
column format (1st transport time
step);  Calculate initial mass in
system

ELLSLV Solve interior equations

ELNUPD Move no-flow boundary concentrations
to solution vector

SMOC6BE Mass-balance calculations

SMOC6C and
SOBS5O

Print results
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Table 2.  Calling tree for ELLAM code, showing hierarchy of secondary
subroutines for transport calculations.  Subroutine to the left calls
subroutine(s) to the right.  Subroutines in column 1 are called from the
main transport loop (subroutine MOC6MVOT).

ELLBDY BDYENT BDYRHS ELMOVE

EVALTF

BNDYTF

EMOVTIM

EVALTF

BDYINT BDYCON BUILDNEI

BDYCR

BDYCL

BINTERP

ELMOVE

EVALTF

BNDYTF

DISTRIB

EDGWGHT

EDGWGHT

EMOVTIM

EVALTF

ELLLHI CLAYER

BLAYER

ELLRHI

CROW

HFACED

VFACED

EDGCOR

ELLCR CINTERP

ELMOVE

EVALTF

BNDYTF

EMOVTIM

EVALTF

ELLDIS

ELLSRC BDYRHS ELMOVE

EVALTF

BNDYTF

EMOVTIM

EVALTF

ELIUPD

ELLOUT

CONVERT GET_IDISP

SMOC5I GET_IDISP

SMOC5A

ELLSLV SSLUGM solver routines

ELNUPD

SMOC6BE SMOC5A

SMOC6C
SOBS5O

print routines

MODFLOW source and sink packages
contain an option called CBCALLOCATE.
When used, the package will save the cell-by-
cell flow terms across all faces of every
source or sink cell.  MOC3D uses these fluid
fluxes to calculate solute flux to or from the
source/sink nodes.  Because these individual

solute fluxes are required to compute the
solute mass balance, the CBCALLOCATE
option must always be selected when using
MOC3D.  Implicit calculations of
concentration changes at nodes caused by
mixing with fluid sources are controlled by
the ELLSRC subroutine.
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The ELLAM code includes a
preconditioned generalized minimum residual
method (GMRES) sparse iterative solver with
an incomplete lower-upper (ILU)
decomposition preconditioner to solve the
non-symmetric system of equations.  The
solver routines are code from the SLATEC
Common Mathematical Library, available
through the NETLIB public domain
repository; see
http://www.netlib.org/slatec/index.html.
Users interested in seeing more details about
the numerical solvers should also examine the
FORTRAN source code listing for MOC3D
and its ELLAM subroutines, as they are very
clearly documented with explanatory
“comment” lines throughout the code.

Some mass-balance calculations have
been reordered compared to the original
MOC3D sequence. The initial mass
calculation is called the during the first
transport time step from within the transport
loop, after the matrix of storage coefficients
has been created.

Mass associated with inflow and
outflow boundary faces is accumulated for
mass-balance reporting each time step.  This
mass is calculated using integration weights
associated with boundary nodes and boundary
cell porosities, along with current boundary
concentration values.  Total amounts are
added to interior and no-flow boundary mass
calculated from the storage coefficient matrix
and current concentrations.

Similarly, decayed mass from inflow
faces and sources is accumulated for mass-
balance reporting.  This total, and decay of
mass stored at the beginning of the time step,
are both reported as contributions to mass flux
out of the transport domain.

Print concentrations and
mass balance (optional)

Compute solute
mass balance

Solve for new concentration
on outflow boundary

Build dispersion integral

Track advected
interior mass

Track advected
 boundary mass

Compute transport
time increment

Solve for new
concentrations at nodes

Yes

Return

Enter

Last
transport time

step?

No

T
ra

ns
po

rt
 lo

op

Create boundary arrays
& calculate inflow mass

Build source integral

Figure 8.  Simplified flow chart for the
transport loop of the ELLAM calculation
process.

Guidance on Input Parameter Values

Discretization parameters NSC, NSR,
NSL, and NT must all be powers of two.  In
each case, the input parameter specified by
the user is the exponent: NSCEXP, NSREXP,

 NSLEXP, and NTEXP, respectively.
In general, use NSC = NSR = NSL = 4

(and therefore NSCEXP = NSREXP =
NSLEXP = 2) except if modeling a one- or
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two-dimensional problem.  Here, a value of 4
is only needed in the dimension(s) of the
problem, with NS values of 2 adequate in the
missing direction(s).  NS values greater than
four may be useful when modeling with a
complicated velocity field, or with numerous
transport time steps, or to improve accuracy
near a boundary.  Computational efficiency is
strongly related to the values of the NS
parameters, but the impact of changing NS
values is highly problem dependent.

The number of discrete mass-bearing
volumes entering the transport subdomain
during a time step is NT+1.  This number
must be large enough so that each grid cell,
from the one at the first boundary to the one
where mass entering at the beginning of that
time step is advected, can receive a portion of
the discretized inflow mass.  If the solution
shows mass becoming distributed down the
flow path in clumps (this is illustrated
schematically in figure 9 for a case in which
two sub-time steps are used), increase
NTEXP (thus increasing NT).  Increasing NT
will smooth the front to the point of ensuring
an even distribution of mass among
destination cells.  NT only comes into effect

for problems with concentrations entering via
fluid sources or inflow across boundaries of
the transport subgrid.

For example, consider the case of one-
dimensional flow discussed below as the first
test problem.  Here, V = 0.1 cm/s and each
cell has a width of 0.1 cm.  NTEXP = 1 (thus
NT = 2) will result in a discretization of
inflow mass such that one fourth enters the
system at the beginning of the time step, one
half in the middle, and one fourth at the end.
Thus, the initial quarter of the mass will be
advected the farthest and will be distributed
among neighboring cells as mandated by the
test functions determined by NSC.  The mass
entering at the end of the time step remains in
the the first grid cell.  The point representing
half of the mass will be advected a number of
cells equal to the magnitude of  (TIMV/2).
For a time step (TIMV) of 5 s or longer,
TIMV/2 > 2.5, so the point will move past the
middle of the third cell.  No advected mass
will end up in the second grid cell, for any
value of NSC.  Increasing NTEXP will
eliminate this problem.

massmass mass

1 2 3 4 5 6 7 8 9 10

t n+1

nt

x

Figure 9.  Schematic representation of
tracking mass from an inflow boundary.  For a
Courant number of 8 and NT = 2, not every
cell along the inflow path receives mass.

MODEL TESTING AND EVALUATION

The ELLAM simulator was tested and
evaluated by running the same suite of test
cases as was applied to MOC3D Version 1 by
Konikow and others (1996) and MOC3D
Version 2 by Kipp and others (1998).  This
suite includes results generated by analytical

solutions and by other numerical models.  It
spans a range of conditions and problem types
so that the user will gain an appreciation for
both the strengths and weaknesses of this
particular code.  It should be noted that all test
cases involve steady flow conditions.
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One-Dimensional Flow

The first test case evaluates ELLAM
for a relatively simple system involving one-
dimensional solute transport in a finite-length
aquifer having a third-type source boundary
condition, as described by Konikow and
others (1996).  The numerical results are
compared to an analytical solution by Wexler
(1992, p. 17).  Note that when modeling using
MOC3D, total flux boundary conditions are
approximated using only advective flux.

The length of the transport system is
12 cm; other parameters are summarized in
table 3.  The solute-transport equation was
solved using ELLAM on a 120-cell subgrid to
assure a constant velocity within the transport
domain.  This use of the subgrid eliminates
the local influence of a zero-velocity
condition at the upstream no-flow boundary
on the calculated velocities within the grid
and allows an accurate match to the boundary
conditions and velocity assumptions for the
analytical solution.

In MOC3D Version 1, the explicit
formulation of the dispersion coefficient
imposed a limiting time step to meet the
stability criteria, and 2401 time increments
were required to solve the transport equation.
The implicit solver of MOC3D Version 2,
however, required only 241 time increments.
ELLAM results for CELDIS = 0.5 (241 time
steps), NSC = 4, NSR = NSL = 2, NT = 128
are essentially identical to the analytical
results (these are the base-case parameters
listed in table 3).  Therefore, these solutions
are not plotted.  Instead, results are plotted for
substantially fewer time increments (larger
values of CELDIS).  (Note that table 3 lists
the “EXP” input parameters that yield the
values for the four numerical ELLAM
parameters used in the simulation: NSC,
NSR, NSL, and NT.)  As discussed below, we
also evaluated several variants of this
problem, in which we varied dispersivity,
decay, and retardation parameters; in all cases
the base-case numerical parameters yielded

Table 3. Base-case parameters used in ELLAM
simulation of solute transport in a one-dimensional,
steady-state flow system

Parameter    Value

Txx = Tyy 0.01 cm2/s

ε 0.1

αL 0.1 cm

αTH = αTV 0.1 cm

PERLEN (length of stress period) 120 s

Vx 0.1 cm/s

Vy = Vz 0.0 cm/s

Initial concentration (C0) 0.0

Source concentration ( ′C ) 1.0

Number of rows 1

Number of columns 122

Number of layers 1

DELR (∆x) 0.1 cm

DELC (∆y) 0.1 cm

Thickness (b) 1.0 cm

CELDIS 0.5

NSCEXP 2

NSREXP 1

NSLEXP 1

NTEXP 7

results that were indistinguishable from the
analytical results.

Two different values of dispersion
coefficients were evaluated in the first set of
tests.  The values were Dxx = 0.1 and 0.01
cm2/s, which are equivalent to αL = 1.0 and
0.1 cm, respectively.  Breakthrough curves
showing concentration changes over time at
different distances from the boundary, as
calculated using both analytical and numerical
solutions, are shown.
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Figure 10 shows the analytical
solution and two ELLAM solutions for the
low-dispersivity case (αL = 0.1 cm).  For
CELDIS = 1, which required 121 transport
time increments, there is a very close match
between the numerical and analytical
solutions, using NSC = 32, NSR = NSL = 2,
and NT = 128. To improve clarity in showing
the results for this case in figure 10, only
every fourth data point is shown, except for
times less than 10 seconds at x = 0.05, where
every point is plotted.  The efficiency of the
numerical solution can be improved by about
a factor of four by setting NSC = 4; the results
are very similar, so are not plotted, although
the concentration is just slightly low at the
first grid cell.  The simulation took 205
seconds when NSC = 32, but only 119
seconds when NSC = 4 (simulations were
executed on a Data General Unix
workstation).  For CELDIS = 10.1 (12 time
increments), using NSC = 4, NSR = NSL = 2,
and NT = 128, concentrations at early times

and short distances are somewhat low, but
elsewhere the results look excellent.  Thus,
there is an overall good agreement with the
analytical results, as well as with the
previously published MOC3D results that used
20 times as many time increments.  For
comparison, the simulation using CELDIS =
10.1 took only 9 seconds.

Concentrations for the high dispersion
case are plotted in figure 11.  For CELDIS = 1
(121 transport time increments), the results
are a very close match to those obtained using
the analytical solution, and ELLAM yields a
smooth solution without the oscillations
produced by MOC3D at short distances.  For
CELDIS = 10.1 (12 time increments and
execution time about one tenth of that for
CELDIS = 1), small discrepancies are
apparent near both boundaries, in that
calculated concentrations are too low near the
inflow boundary and too high near the
outflow boundary.
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Figure 10.  Numerical and analytical solutions at three different locations
for solute transport in a one-dimensional, steady flow field.  Parameter
values for the base case are listed in table 3.
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Figure 11.  Numerical and analytical solutions for the case of increased
dispersivity (αL = 1.0 cm, Dxx = 0.1 cm2/s, and other parameters as
defined in table 3).

Konikow and others (1996) also
present the results of these tests in the form of
concentration profiles in space at various
times and for various retardation factors (see
their figures 22 and 23).  Replication of these
tests using the ELLAM formulation yields
results comparable to those just described, as
seen in figure 12 for CELDIS = 10.1 and
CELDIS = 1 in the nonreactive case.  To test
the limits of the ELLAM method, we also
solved this problem using CELDIS = 61 (2
time increments), NSC = 4, NSR = NSL = 2,
and NT = 128.  Although these numerical
parameters yield too few time increments to
even expect an accurate or precise match to
the breakthrough curves, figure 12 indicates
that even in this extreme case, a qualitatively
good match for most of the breakthrough was
calculated, except notably near the outflow
face.  Although such large values of CELDIS
are not recommended, the results for CELDIS
= 61 demonstrate the apparent robustness of
the method.

The accuracy of the numerical method
for problems in which decay is occurring was

evaluated by specifying the decay rate as λ =
0.01 s-1 for the same low-dispersion, no
sorption, problem as defined for figure 10.
The results for CELDIS = 1, NSC = 32, NSR
= NSL = 2, and NT = 128 are presented in
figure 13, which shows excellent agreement
between the analytical and numerical
solutions.  For clarity, only every fourth data
point of the numerical solution is shown.  As
in the case of no decay, NSC = 4 (not plotted)
produces a slightly low concentration at short
distance.

In all cases described above, the mass-
balance error was less than 0.001 percent.  In
contrast, the mass-balance errors for these
problems using the explicit and implicit
versions of the method-of-characteristics code
yielded mass-balance errors of up to a few
percent in some cases.  ELLAM is mass
conservative whereas MOC and MOCIMP are
not.  Also, as illustrated by the results for
CELDIS = 61 in figure 12, an accurate mass
balance does not prove that you have an
accurate solution.
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Figure 12.  Numerical and analytical solutions for three different times
for same one-dimensional, steady flow, solute-transport problem
shown in figure 10.
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Figure 13.  Numerical and analytical solutions for three different times
for case in which solute is subject to decay at rate of λ = 0.01 s-1.

The sensitivity of the results to
variations in the value of NT was evaluated
for the case of CELDIS = 1.0, shown in figure
10.  Values of NTEXP were varied from 2 to

9 (figure 10 represents NTEXP = 7).  This
parameter only had a small effect on the
accuracy of results at the node closest to the
source; there were no discernible differences

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 1 0 1 2

R
E

LA
T

IV
E

 C
O

N
C

E
N

T
R

A
T

IO
N

DISTANCE (cm)

t = 6 sec

t = 120 sec
t = 60 sec

Analytical

ELLAM (CELDIS=1.0)

ELLAM (CELDIS=10.1)

ELLAM (CELDIS=61.)

fl

•



30

elsewhere.  It also had only a minor impact on
the efficiency of the solution.  At the first
node, the breakthrough curves were
essentially identical for values of NTEXP
ranging from 5 to 9, and the running time
increased by less than 13 percent (from 203 s
to 229 s).  However, decreasing the value of
NTEXP from 5 to 2 caused increasingly
larger (but still minor) deviations from the

analytical solution, while decreasing the
running time only by 1 s (from 203 s to 202
s).  For NTEXP = 2, the solution was stable
but too low by about 2 percent at most times.
For this case, it appears that a value of
NTEXP = 5 or 6 would be optimal, but the
results were relatively insensitive to variations
in NTEXP.

Uniform Flow, Three-Dimensional Transport

To evaluate and test ELLAM for three-
dimensional cases, we compared numerical
results with those of the analytical solution
developed by Wexler (1992) for the case of
three-dimensional solute transport from a
continuous point source in a steady, uniform
flow field in a homogeneous aquifer of
infinite extent.  Konikow and others (1996)
note that this evaluation primarily is a test of
the accuracy of the calculated dispersive flux
in three directions because the flow field is
aligned with the grid.  The problem and
analytical solution are described in detail by
Konikow and others (1996, p. 45-48); the
parameters and boundary conditions for this
test case are summarized in table 4.  This case
also represents a test of the ability of the
algorithm to represent the effects of a solute
source at a specified flux boundary condition.

The results of ELLAM are compared
graphically in figure 14 with those of the
analytical solution for the x-y plane passing
through the point source.  Figure 14a shows
the concentrations in this plane at t = 400 days
as calculated using the analytical solution.
Also shown, in figures 14b-d, are the ELLAM
solutions using CELDIS = 7 (two transport
time increments), NSC = NSR = NSL = 4,
and NT = 16 (figure 14b); CELDIS = 1 (14
time increments), NSC = NSR = NSL = 4,
and NT = 4 (figure 14c); and CELDIS = 0.1
(134 time increments), NSC = NSL = 4, NSR
= 8, and NT = 16 (figure 14d).

Table 4.  Base-case parameters used in ELLAM
simulation of transport from a continuous point
source in a three-dimensional, uniform, steady-
state flow system

  Parameter   Value

Txx = Tyy 0.0125 m2/day

ε 0.25

αL 0.6 m

αTH  0.03 m

αTV 0.006 m

PERLEN (length of stress period) 400 days

Vy 0.1 m/day

Vx = Vz 0.0 m/day

Initial concentration (C0) 0.0

Source concentration ( ′C ) 2.5 × 106 g/m3

Q (at well) 1.0 × 10-6 m3/d

Source location Column = 1,
Row = 8,
Layer = 1

Number of rows 30

Number of columns 12

Number of layers 40

DELR (∆x) 0.5 m

DELC (∆y) 3.0 m

Layer thickness (∆z) 0.05 m

CELDIS 1.0

NSCEXP 2

NSREXP 2

NSLEXP 2

NTEXP 2
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As noted in previous MOC3D reports,
a slightly greater spreading is evident in the
numerical model results than in the analytical
solution, both upstream as well as
downstream of the source.  Part of this
difference, however, is explained by the fact
that the numerical source is applied over a
finite area in the horizontal plane of the
model, in which the length of the source cell
is 3 m in the direction parallel to flow,
whereas the source is represented as a true
point in the analytical solution.

The ELLAM results using two
transport time increments (figure 14b)
indicate that more time steps are needed in
order to accurately simulate dispersion.  The

 ELLAM results for 14 time steps (figure 14c)
accurately characterize the dispersive flux
without the spreading upstream from the
source that is produced by MOC3D.  The
ELLAM results for 134 time steps (figure 14d)
yield even less spreading upstream of the
source, but do exhibit numerical oscillations
produced because the concentration gradient
is too steep relative to the grid spacing.

Konikow and others (1996) also
present comparisons for this case for vertical
planes parallel and perpendicular to the flow
direction.  These same comparisons between
the analytical and ELLAM results are as close
as between figures 14a and 14c, and are not
reproduced here.
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Figure 14.  Concentration contours for (a) analytical and (b-d) ELLAM numerical solutions
in the horizontal plane containing the solute source (layer 1) for three-dimensional solute
transport in a uniform steady flow field at t = 400 days.  Parameters are defined in table 4.
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Two-Dimensional Radial Flow   

A radial-flow transport problem was
used to compare the ELLAM solution to the
analytical solution given by Hsieh (1986) for
a finite-radius injection well in an infinite
aquifer.  The problem involves flow from a
single injection well; the velocities vary in
space and vary inversely with the distance
from the injection well.

The parameters for the problem are
summarized in table 5 and the analytical
solution and other details about this test case
are presented by Konikow and others (1996,
p. 49-50) and Kipp and others (1998, p. 21-
22).  The problem was modeled using a grid
having 30 cells in the x-direction and 30 cells
in the y-direction, representing one quadrant
of the radial flow field (90 of 360 degrees).

Table 5.  Parameters used in ELLAM simulation of
two-dimensional, steady-state, radial flow case,
showing range of values tested for selected
numerical parameters

  Parameter   Value

Txx = Tyy 3.6 m2/hour

ε 0.2

αL 10.0 m

αTH = αTV 10.0 m

PERLEN (length of stress period) 1000 hours

Q (at well) 56.25 m3/hour

Source concentration ( ′C ) 1.0

Number of rows 30

Number of columns 30

Number of layers 1

DELR (∆x) = DELC (∆y) 10.0 m

Thickness (b) 10.0 m

CELDIS 0.25-75.0

NSCEXP 2-3

NSREXP 2-3

NSLEXP 1

NTEXP 2-4

In figure 15, ELLAM solutions using
2, 29, and 563 transport time increments
(corresponding to CELDIS values of 75, 5,
and 0.25, respectively) are shown along with
the analytical solution.  Each run represents
the qualitative features of the analytical
solution (figure 15a), with the exception of
the high concentration contour of the two-
time-step (CELDIS = 75) run, which
manifests an articulated rather than smooth
shape.  The high concentration contour is
often the most difficult for ELLAM to portray
accurately.

The two-time-step run shown in figure
15b uses CELDIS = 75, NSC = NSR = 4,
NSL = 2, NT = 16.  The high concentration
contour has nonphysical oscillations.
Increasing NS and NT values (not shown)
smooth that one contour noticeably, but
inadequately.

The 29-time-step run shown in figure
15c uses CELDIS = 5, NSC = NSR = 4, NSL
= 2, NT = 4.  It is a very close approximation
to the analytical solution, although the high
concentration contour does not have a
constant radius.

Figures 15d and e show the results of
two runs using 563 time steps.  Parameter
values for these two cases are CELDIS =
0.25, NSC = NSR = 4, NSL = 2, NT = 4, and
CELDIS = 0.25, NSC = NSR = 8, NSL = 2,
NT = 4.  The improvement obtained using
higher NS values when modeling with
numerous time steps is illustrated here.  The
former values yield a set of contours not at
constant radii, whereas the latter, using NSC
= NSR = 8, produce a very close match to the
analytical solution.

For comparison, the implicit solutions
of MOC3D match the analytical solution
almost exactly and agree very closely with the
explicit dispersive transport solution of
MOC3D (see Konikow and others, 1996,
figure 29).  The explicit solution required 596
time increments and used 750 s of cpu time,
and the implicit solutions required 282 time
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increments and used 445 s of cpu time.  The
ELLAM solutions represented in figures 15c-e
required 138 s, 1,990 s, and 5,780 s,

respectively, of cpu time (all times represent
runs on a Unix workstation).
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Figure 15.  Contours of relative concentrations calculated using (a) analytical and (b-e)
numerical ELLAM models for solute transport in a steady radial flow field.  Source
concentration is 1.0 and source is located in cell (1,1).  Grid spacing is 10.0 m.
Parameters are defined in table 5.

Point Initial Condition in Uniform Flow

A problem involving three-
dimensional solute transport from an
instantaneous point source, or Dirac initial
condition, in a uniform flow field was used as
another test problem for MOC3D.  An
analytical solution for an instantaneous point
source in a homogeneous infinite aquifer is
given by Wexler (1992, p. 42), who presents
the POINT3 code for a related case of a
continuous point source.  The POINT3 code
was modified to solve for the desired case of
an instantaneous point source.

Test problems were designed to
evaluate the numerical solution for two
cases—one in which flow is parallel to the
grid (in the x-direction) and one in which flow
occurs at 45 degrees to the x- and y-axes.
This allows us to evaluate the accuracy and
sensitivity of the numerical solution to the
orientation of the grid relative to the flow.
The assumptions and parameters for this test
case are summarized in table 6 and are
described in more detail by Konikow and
others (1996).
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Table 6.  Parameters used in ELLAM simulation of
three-dimensional transport from a point source
with flow in the x-direction and flow at 45 degrees
to x- and y-axes

  Parameter   Value

Txx = Tyy 10.0 m2/day

ε 0.1

αL 1.0 m

αTH = αTV 0.1 m

PERLEN (length of stress period) 90 days

Vx 1.0275 m/day

Vy = Vz 0.0 m/day*

Initial concentration at source 1 × 106

Source location in transport
grid

Column = 11,
Row = 36,     
Layer = 4

Number of rows 72

Number of columns 72

Number of layers 24

DELR (∆x) 3.33 m

DELC (∆y) 3.33 m

Layer thickness (b=∆z) 10.0 m

CELDIS 5.0

NSCEXP 2

NSREXP 2

NSLEXP 2

NTEXP 1

*  For flow at 45 degrees to x- and y-axes, Vy = 1.0275
m/day

We specified boundary conditions for
the test case of flow in the x-direction such
that Vx = 1.0275 m/d, and Vy = Vz = 0.0 m/d.
For flow at 45 degrees to x and y, we
specified boundary conditions such that Vx =
Vy = 1.0275 m/d, and Vz = 0.0 m/d.  For both
cases, the distance the center of mass of the
plume travels in the x-direction is the same
for equal simulation times.  Note, however,
that the magnitude of velocity is higher in the
latter case; therefore, there will be more

dispersion in that problem during an equal
time interval.

The results for both the analytical and
numerical solutions for the case in which flow
occurs in the x-direction are shown in figure
16, where values of CELDIS = 5 (yielding six
transport time increments), NSC = NSR =
NSL = 4, and NT = 2 were used.  These
results represent the concentrations in the
plane of the initial source of solute.  The
ELLAM transport algorithm gives results
(figure 16b) for a 72 by 72 grid that are close
to those of the analytical solution (figure 16a).
The numerical results, however, do show
some slight spreading (or numerical
dispersion) relative to the analytical solution
in both the transverse and longitudinal
directions.  Increasing the number of time
increments does not completely eliminate the
spreading and causes some loss of peak
concentrations, even with increased NS
values.  In contrast to the previous MOC3D
solutions, ELLAM results retain the symmetry
of the analytical solution.  Part of the
discrepancy is attributable to the need in
ELLAM to use four grid points to discretize a
front.  This precludes the possibility of
modeling with high accuracy the migration of
an instantaneous point source placed in a
single grid cell.  Therefore, we modified this
test problem for ELLAM by using a dispersed
solute mass as an initial condition.  The initial
condition for this ELLAM test is the analytical
solution to the original point source problem
at t = 90 days, and the ELLAM solution is
evaluated against the Wexler analytical
solution later in time at t = 130 days.  These
results are presented in figure 17, where it can
be seen that the analytical solution (figure
17a) and the numerical solution (figure 17b)
are very similar.  The ELLAM solution,
however, still clearly exhibits some numerical
dispersion, which is most evident at the lower
concentrations.
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Figure 16.  Concentration contours for (a) analytical and (b) numerical solutions for
transport of a point initial condition in uniform flow in the x-direction at t = 90 days.  The z-
component of flow is zero, but there is dispersion in all three directions.  Contour values are
the log of the concentrations.
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Figure 17.  Concentration contours for (a) analytical and (b) ELLAM numerical solutions for
transport of a dispersed-point initial condition in uniform flow in the x-direction at t = 130
days.  The y- and z-components of flow are zero, but dispersion occurs in all three
directions.  Contour values are the log of the concentrations.

The results of the test problem for
flow at 45 degrees to the grid are shown in
figure 18, again using a 72×72×24 grid.  The
analytical solution for t = 130 days, which

provides the basis for the evaluation, is shown
in figure 18a.  As was done for the previous
analysis shown in figure 17, the ELLAM
solution in this case also used the analytical
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Figure 18.  Concentration contours for (a) analytical and (b) ELLAM numerical solutions for
transport of a point initial condition in uniform flow at 45 degrees to the x-direction at t = 130
days.  Contour values are the log of the concentrations.

solution at t = 90 days as the initial
conditions.  The results using CELDIS = 5
(three time increments), NSC = NSR = NSL =
4, and NT = 2 are shown in figure 18b for the
plane of the initial source.  As in the previous
case (where flow is aligned with the grid),
ELLAM produces the symmetry characteristic
of the analytical solution.  There is also slight
longitudinal spreading (numerical dispersion)
that is not alleviated by increasing the number
of time steps.

Unlike the previous case, the
numerical results in figure 18b do show some
distortion of the shape of the plume relative to
the analytical solution.  It is not as
pronounced, however, as the “hourglass”
shape yielded by MOC3D for the Dirac
problem (see Kipp and others, 1998, figure
14).  There is a narrowing of the plume
calculated with the numerical model, which is
characteristic of a grid-orientation effect and
is caused primarily by the off-diagonal (cross-
derivative) terms of the dispersion tensor.
When flow is oriented parallel to the grid, or
when longitudinal and transverse
dispersivities are equal, the cross-derivative

terms of the dispersion tensor are zero.
Because flow is at 45 degrees to the grid in
this test problem, the cross-derivative
dispersive flux terms are of maximum size
and negative concentrations are most likely to
occur.  The calculated concentration field is
less accurate in this case largely because the
standard differencing scheme for the cross-
derivative dispersive flux terms can cause
overshoot and undershoot of concentrations.
If the base (or background) is zero
concentration, then undershoot will cause
negative concentrations.  The magnitude of
this overshoot and undershoot effect can be
reduced by using a finer grid.

Some small areas of negative
concentrations were calculated, but they do
not appear in figure 18b using logarithmic-
scale contouring.  To show the extent of the
areas of negative concentration, we have
replotted the results illustrated in figure 18b in
figure 19, using two types of shading for areas
where the relative concentration is less than
-0.05 and less than -10.0.  We tested the
sensitivity of the extent of negative
concentrations to the size of the transport time
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increment by reducing the value of CELDIS
to 0.25.  The area over which negative
concentrations occurred was only slightly
smaller.  The increase in execution time,
however, was significant, so the very small
improvement does not appear to justify the
extra computational costs.

Figure 19.  Concentration contours for
ELLAM numerical solution showing areas
of calculated negative concentrations for
problem represented in figure 18b.
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Constant Source in Nonuniform Flow   

Burnett and Frind (1987) used a
numerical model to simulate a hypothetical
problem having a constant source of solute
over a finite area at the surface of an aquifer
having homogeneous properties, but
nonuniform boundary conditions, which result
in nonuniform flow.  Because an analytical
solution is not available for such a complex
system, we use their results for this test case
as a benchmark for comparison with the
results of applying the ELLAM algorithm in
MOC3D, as was also done by Konikow and
others (1996) and Kipp and others (1998).
Burnett and Frind (1987) used an alternating-
direction Galerkin finite-element technique to
solve the flow and solute-transport equations
in both two and three dimensions.  Their
model also includes the capability to vary αT
as a function of coordinate direction, thereby
allowing this feature of MOC3D to be
evaluated.  A detailed description of the
problem geometry and of the parameters for
the numerical simulation are presented by
Konikow and others (1996, p. 55-60).

Cases of both two- and three-
dimensional transport were examined for this
problem.  The grids used in the ELLAM
simulations were designed to match as closely
as possible the finite-element mesh used by
Burnett and Frind (1987).  Some differences
in discretization, however,  could not be
avoided because the finite-element method
uses a point-centered grid whereas ELLAM
uses a block-centered (or cell-centered) grid.
The former allows specifications of values at
nodes, which can be placed directly on
boundaries of the model domain.  Nodes in
ELLAM are located at the centers of cells, and
block-centered nodes are always one-half of
the grid spacing away from the edge of the
model domain.  Among the small differences
arising from the alternative discretization
schemes are that, in the ELLAM grid, (1) the
modeled location of the 14.25 m long source
area is offset by 0.225 m towards the right,
and (2) the total length of the domain is
199.5 m.
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The first simulation of this test
problem was for the case of a two-dimensional
model.  The input data values for this analysis
are listed in table 7.  The top discretization
layer consisted of constant-head nodes and the
solute source.

Results for the two-dimensional case
from the ELLAM simulation closely match
those of Burnett and Frind (1987) (see figure
20).  The results using CELDIS = 30 (seven
time increments), NSC = NSR = NSL = 4,
and NT = 32 are shown.  The shape of the
plume is almost exactly the same for both
models.  In the ELLAM results, however, the
highest concentration contour (0.9) does not
extend as far downgradient as that of Burnett
and Frind (1987), while the low concentration
contour (0.3) from ELLAM extends slightly
farther downgradient.  Overall, the ELLAM
results provide a closer match to the contours
of Burnett and Frind than do the MOC3D
contours using 381, 1901, or 4218 time
increments (see Kipp and others, 1998).  The
ELLAM contours (for all NS values tested) are
free of “wiggles” in the MOC3D solution
discussed by Kipp and others (1998).
Increasing the number of transport time
increments produced a solution having a
slightly greater downgradient extent, but still
short of MOC3D results.

Table 7.  Parameters used for ELLAM simulation
of transport in a vertical plane from a continuous
point source in a nonuniform, steady-state, two-
dimensional flow system (described by Burnett
and Frind, 1987)

  Parameter   Value

K 1.0 m/day

ε 0.35

αL 3.0 m

αTH 0.10 m

αTV 0.01 m

PERLEN (length of stress
period)

12,000 days

Source concentration ( ′C ) 1.0

Number of rows 1

Number of columns1 141

Number of layers1 91

DELR (∆x) 1.425 m

DELC (∆y) 1.0 m

Layer thickness (b=∆z) 0.2222-0.2333 m

CELDIS 30.0

NSCEXP 2

NSREXP 2

NSLEXP 2

NTEXP 5

1 One row and layer were allocated to defining
boundary conditions, so concentrations calculated in
only 140 columns and 90 layers were used for
comparison.
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Figure 20.  Two-dimensional simulation results for nonuniform-flow test case showing
plume positions as contours of relative concentration; (a) finite-element model (modified
from Burnett and Frind, 1987, figure 8a), and (b) ELLAM solution using CELDIS = 30.
Contour interval is 0.2 relative concentration.
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As was done for the MOC3D tests
(Konikow and others, 1996; Kipp and others,
1998), the ELLAM grid was expanded
laterally to 15 rows having ∆y of 1.0 m for the
three-dimensional version of this case.  Figure
21 shows the transport results in a vertical
plane at the middle of the plume for both
models for the case in which αTV  = 0.01 m
and αTH = 0.1 m.  The ELLAM results for the
vertical plane in the first row are contoured in
figure 21b (because of symmetry, we only
simulate half of the plume, as explained by
Konikow and others, 1996).  The ELLAM
plume closely matches that calculated by the
finite-element model (figure 21a), although
the former shows slightly farther downstream
migration of low concentrations of solute.  As

in the two-dimensional case, the ELLAM
solution provides a closer match to the
Burnett and Frind (1987) solution than do the
previous MOC3D results.

Figure 22 shows the results for the
case in which the vertical transverse
dispersivity is increased by a factor of ten, so
that αTH = αTV  = 0.1 m.  The ELLAM results
for CELDIS = 30 yielded concentrations that
were noticeably low near the source (near the
upgradient end of the plume), so the
simulation was repeated using CELDIS = 21
(10 time increments).  These ELLAM results
are illustrated in figure 22b) and appear to
agree very closely with the results of Burnett
and Frind (1987) (figure 22a).
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(a)   3D Finite-Element Model

Figure 21.  Three-dimensional simulation results for nonuniform-flow test case in which
αTH  = 0.1 m and αTV  = 0.01 m:  (a) finite-element model (modified from Burnett and
Frind, 1987, figure 8c), and (b) numerical ELLAM solution using CELDIS = 30.  Plume
positions are represented by contours of relative concentration; contour interval is 0.2
relative concentration.
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Figure 22.  Three-dimensional simulation results for nonuniform-flow test case in which
αTH  = αTV  = 0.1 m:  (a) finite-element model (modified from Burnett and Frind, 1987,
figure 9b), and (b) numerical ELLAM solution using CELDIS = 21.  Plume positions are
represented by contours of relative concentration; contour interval is 0.2 relative
concentration.
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Relative Computational and Storage Efficiency

Computer-memory requirements for
ELLAM are greater than those for the explicit
or implicit MOC3D dispersive transport
algorithm.  The additional arrays required can
increase the memory size requirement by as
much as a factor of three (see table 8).

The computational effort required by
the ELLAM simulator is strongly dependent
on the size of the problem being solved, as
determined by the total number of nodes, the
NS and NT values, and the total number of
time increments (controlled by CELDIS).
The user is cautioned that using values for NS
and NT parameters that are too small for a
given problem may lead to inaccurate
solutions.  Sensitivity testing will help the
user determine appropriate values to specify.
Analyses indicate that the greatest
computational effort, as measured by CPU

time, is typically expended in the mass
tracking routines.  For a given problem,
computational time may vary significantly as
a function of the characteristics of the
particular computer on which the simulation
is performed, and on which FORTRAN
compiler and options were used to generate
the executable code.

For a given problem, the ELLAM
algorithm can often yield an accurate solution
more efficiently than the previously
documented explicit or implicit MOC options.
However, this will typically require the use of
a CELDIS value of 5 or more; the explicit and
implicit versions of MOC require that
CELDIS be less than or equal to 1.0.  Table 8
shows that ELLAM was more efficient for
three of the six test problems evaluated.

Table 8.  Execution times and storage requirements for MOC3D and ELLAM for selected test cases

Run Time in CPU-seconds Array Elements Used1

Problem Description Explicit Implicit ELLAM Explicit Implicit  ELLAM
One-Dimensional

Steady Flow2 7 10 9
CELDIS=10.1

11,457 17,400 33,489

Three-Dimensional
Steady Flow2

404 175 1,366
CELDIS=1

897,331 1,602,994 3,344,624

Two-Dimensional
Radial Flow and
Dispersion2

930 445 138
CELDIS=5

455,737 499,900 233,564

Point Initial Condition in
Uniform Flow2

210 310 2,721
CELDIS=5

1,728,673 2,406,112 3,384,524

Constant Source in
Nonuniform Flow
(Two-Dimensional)3

13,360 2,450 2,245
CELDIS=30

868,951 1,457,602 2,850,056

Constant Source in
Nonuniform Flow
(Three-Dimensional)3

38,117 12,026 4,400
CELDIS=30

12,823,151 21,652,034 41,206,836

1 Data arrays and lists for MODFLOW and explicit MOC3D are allocated space in one array, the
MODFLOW "X" array.  ELLAM  also uses an “MX” array for integer arrays.
2 Data General server with a Motorola 88110 chip running DG Unix 5.4R3.10 with 256MB RAM and a 45
MHz processor was used for this problem.  Green Hills Software FORTRAN-88000 was used to compile
MOC3D.
3 Silicon Graphics server with an R8000 chip running Irix 6.0.1 with 576MB RAM and a 90 MHz processor
was used for this problem.  MIPSpro F77 was used to compile MOC3D.
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APPENDIX A:  DATA INPUT INSTRUCTIONS FOR MOC3D (Version 3.5)

This Appendix includes a complete set of instructions for preparing a data set for the
MOC3D model.  For more comprehensive descriptions of input parameters, options, and
underlying assumptions, however, the user should also refer to Konikow and others (1996), Kipp
and others (1998), and Goode (1999).  Major changes that have been implemented since the
release of Version 3.0 are shaded to highlight the new instructions.

MODFLOW Name File

Transport simulation is activated by including a record in the MODFLOW name file using
the file type (Ftype) “CONC” to link to the transport name file.  The transport name file specifies
the files to be used when simulating solute transport in conjunction with a simulation of ground-
water flow using MODFLOW.  The transport name file works in the same way as the MODFLOW
name file.

MODFLOW Source and Sink Packages

Except for recharge, concentrations associated with fluid sources (C') are read as auxiliary
parameters in the MODFLOW source package.  The source concentration is read from a new
column appended to the end of each line of the data file describing a fluid sink/source (see
documentation for revised MODFLOW model; Harbaugh and McDonald, 1996a and 1996b).  For
example, concentrations associated with well nodes should be appended to the line in the WEL
Package where the well’s location and pumping rate are defined.  These concentrations will be
read if the auxiliary parameter “CONCENTRATION” (or “CONC”) appears on the first line of the
well input data file.  The concentration in recharge is defined separately, as described in following
section “Source Concentration in Recharge File.”

To simulate solute transport the MODFLOW option enabling storage of cell-by-cell flow
rates for each fluid source or sink is required in all fluid packages except recharge.  The key word
“CBCALLOCATE” (or “CBC”) must appear on the first line of each input data file for a fluid
package (see Harbaugh and McDonald, 1996a and 1996b).

MOC3D Input Data Files

All input variables are read using free formats, except as specifically indicated.  In free
format, variables are separated by one or more spaces or by a comma and optionally one or more
spaces.  Blank spaces are not read as zeros.  Variables that are optional are enclosed in brackets, as
in {option}.
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MOC3D Transport Name File (CONC)

FOR EACH SIMULATION:

 1.  Data:   FTYPE    NUNIT    FNAME

The name file consists of records defining the names and unit numbers of the files.  Each
“record” consists of a separate line of data.  There must be a record for the listing file and for the
main MOC3D input file.

The listing (or output) file (“CLST”) must be the first record.  The other files may be in any
order.  Each record can be no more than 79 characters.

FTYPE The file type, which may be one of the following character strings:

CLST MOC3D listing file (separate from the MODFLOW listing file) [required].

MOC or MOCIMP or ELLAM Main MOC3D input data file [required].  Specifying
MOC indicates dispersion calculations will be explicit (as described by
Konikow and others, 1996); specifying MOCIMP indicates dispersion
calculations will be implicit (as described by Kipp and others, 1998); and
specifying ELLAM indicates that the solute-transport equation will be solved
using the ELLAM method (as described in this report).

CRCH Concentrations in recharge [optional].

CNCA Separate output file containing concentration data in ASCII (text-only) format
[optional].  Frequency and format of printing controlled by NPNTCL and
ICONFM.  If concentrations are written to a separate output file, they will
not be written to the main output file.

CNCB Separate output file containing concentration data in binary format [optional].

VELA Separate output file with velocity data in ASCII format [optional].  Frequency
and format of printing controlled by NPNTVL and IVELFM.

VELB Separate output file with velocity data in binary format [optional].

PRTA Separate output file with particle locations printed in ASCII format [optional].
Frequency and format of printing controlled by NPNTPL.

PRTB Separate output file with particle locations printed in binary format [optional].

OBS Observation wells input file [optional].

DATA For formatted files such as those required by the OBS package and for array
data separate from the main MOC3D input data file [optional].

DATA(BINARY) For formatted input/output files [optional].

AGE Ground-water age simulation input file [optional]. (Not compatible with
ELLAM option.)

DP Double porosity input file [optional]. (Not compatible with ELLAM option.)
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DK Simple reactions(decay, zero-order growth, retardation) input file [optional].
(Not compatible with ELLAM option.)

NUNIT The FORTRAN unit number used to read from and write to files.  Any legal unit
number other than 97, 98, and 99 (which are reserved by MODFLOW) can be
used provided that it is not previously specified in the MODFLOW name file.

FNAME The name of the file.

Note:  AGE, DP, and DK file types are described by Goode (1999).

Main MOC3D Package Input (MOC, MOCIMP, or ELLAM)

Input for the method-of-characteristics (MOC3D) solute-transport package is read from the
unit specified in the transport name file.  The input consists of up to 19 separate records or data
sets, as described in detail below (note that data set numbers do not necessarily correspond with
line numbers in the file).  These data are used to specify information about the transport subgrid,
physical and chemical transport parameters, numerical solution variables, and output formats.
Output file controls for the MOC3D package are specified in the transport name file, described
previously.  Compared to previous versions of MOC3D, use of the ELLAM option requires
definition of several alternative input parameters and deletes two previously required data sets (6
and 13), which are used only if MOC or MOCIMP is selected.

FOR EACH SIMULATION:

 1.  Data:   HEDMOC A two-line character-string title describing the
simulation (80 text characters per line).

 2.  Data:   HEDMOC (continued)

 3.  Data:   ISLAY1   ISLAY2   ISROW1   ISROW2   ISCOL1   ISCOL2

ISLAY1 Number of first (uppermost) layer for transport.

ISLAY2 Last layer for transport.

ISROW1 First row for transport.

ISROW2 Last row for transport.

ISCOL1 First column for transport.

ISCOL2 Last column for transport.

Notes:

Transport may be simulated within a subgrid, which is a “window” within the primary MODFLOW
grid used to simulate flow.  Within the subgrid, the row and column spacing must be uniform if FTYPE
MOC or MOCIMP are specified in the transport name file, but subgrid spacing can vary as in MODFLOW
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if ELLAM is specified.  The thickness can vary from cell to cell and layer to layer.  However, the range in
thickness values (or product of thickness and porosity) should be as small as possible.

 4.  Data:   NODISP    DECAY    DIFFUS

NODISP Flag for no dispersion (set NODISP = 1 if no dispersion in problem; this will reduce
storage allocation).

DECAY First-order decay rate [1/T] (DECAY = 0.0 indicates no decay occurs).

DIFFUS Effective molecular diffusion coefficient [L2/T].

Notes:

The decay rate ( ) is related to the half life (t1/2) of a constituent by  = (ln 2)/t1/2.

The effective molecular diffusion coefficient (Dm) includes the effect of tortuosity.

IF Ftype MOC OR MOCIMP IS ACTIVE:

 5a.  Data:   NPMAX    NPTPND

NPMAX Maximum number of particles available for particle tracking of advective transport
in MOC3D.  If set to zero, the model will calculate NPMAX according to the
following equation:

NPMAX = 2× NPTPND× NSROW× NSCOL× NSLAY.

NPTPND Initial number of particles per cell in transport simulation (that is, at t = 0.0).  Valid
options for default geometry of particle placement include 1, 2, 3, or 4 for one-
dimensional transport simulation; 1, 4, 9, or 16 for two-dimensional transport
simulation; and 1, 8, or 27 for three-dimensional transport simulation.  The user
can also customize initial placement of particles by specifying NPTPND as a
negative number, in which case the minus sign is recognized as a flag to
indicate custom placement is desired.  In this case, the user must input local
particle coordinates as described below.

IF Ftype ELLAM IS ACTIVE:

 5b.  Data:   NSCEXP    NSREXP    NSLEXP    NTEXP

NSCEXP Exponent used to calculate the number of subcells in the column direction (NSC,
where NSC = 2**NSCEXP).

NSREXP Exponent used to calculate the number of subcells in the row direction (NSR).

NSLEXP Exponent used to calculate the number of subcells in the layer direction (NSL).

NTEXP Exponent used to calculate the number of sub-time steps per transport time

increment (NT).
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Notes:

In general, numerical accuracy will be increased by increasing the value of these parameters.  This
will also, however, increase computational costs.  For each of the four parameters above, the value
represents the exponent y in the expression 2y.

Entering a zero or negative value for any of the above variables will cause the code to use default
values.  Default values for NSCEXP, NSREXP, and NSLEXP are 2 in active dimensions and 1 in inactive
dimensions (for example, if a simulation represented a two-dimensional areal problem in which the number
of rows and columns were greater than one and the number of layers equals one, then default settings would
be NSCEXP = 2, NSREXP = 2, and NSLEXP = 1, and the number of subcells in each direction would be 4,
4, and 2, respectively).  The default value of NTEXP is 2.

IF MOC OR MOCIMP IS ACTIVE AND IF NPTPND IS NEGATIVE IN SIGN:

 6.  Data:   PNEWL    PNEWR    PNEWC

PNEWL Relative position in the layer (z) direction for initial placement of particle within
any finite-difference cell.

PNEWR Relative position in the row (y) direction for initial placement of particle.

PNEWC Relative position in the column (x) direction for initial placement of particle.

Notes:

The three new (or initial) particle coordinates are entered sequentially for each of the NPTPND
particles.  Each line contains the three relative local coordinates for the new particles, in order of layer, row,
and column.  There must be NPTPND lines of data, one for each particle.  The local coordinate system
range is from -0.5 to 0.5, and represents the relative distance within the cell about the node location at the
center of the cell, so that the node is located at 0.0 in each direction.

FOR EACH SIMULATION:

 7.  Data:   CELDIS    {FZERO}    {INTRPL}

CELDIS  Maximum fraction of cell dimension that particle may move in one step (typically,
0.5≤CELDIS ≤1.0).  For ELLAM, CELDIS can be greater than 1.0, and specifying
CELDIS = 0.0 will result in one transport time step being used (which is not generally
recommended).

FZERO  If the fraction of active cells having no particles exceeds FZERO, the program will
automatically regenerate an initial particle distribution before continuing the simulation
(typically, 0.01≤FZERO ≤0.05).  Only specify if MOC or MOCIMP is active.

INTRPL Flag for interpolation scheme used to estimate velocity of particles.  The default
(INTRPL = 1) will use a linear interpolation routine; if INTRPL = 2, a scheme will
be implemented that uses bilinear interpolation in the row and column (j and i)
directions only (linear interpolation will still be applied in the k, or layer, direction).
(See section “Discussion—Choosing appropriate interpolation scheme.”)  Only
specify if MOC or MOCIMP is active.  If ELLAM is specified, the code will
automatically set INTRPL = 1.



48

IF MOCIMP IS ACTIVE:

 7.1  Data:   FDTMTH    NCXIT    IDIREC    EPSSLV    MAXIT

FDTMTH Weighting factor for temporal differencing of dispersion equation (0.0 ≤ FDTMTH ≤
1.0).  We suggest using either a value of FDTMTH = 0.5, a centered-in-time (or
Crank-Nicolson) approximation, or FDTMTH = 1.0, a backward-in-time (or fully
implicit) approximation.  [Default value = 1]

NCXIT Number of iterations for the explicitly-lagged cross-dispersive flux terms (NCXIT ≥ 1).
We suggest that the user initially specify a value of 2, but if the solution exhibits
significant areas of negative concentrations, then the value of NCXIT should be
increased to require more iterations, which typically will reduce the extent and
magnitude of negative concentrations (at the cost of increased computational time).
[Default value = 2]

IDIREC  Direction index for permutation of the red-black node renumbering scheme.  The order
is as follows: 1: x,y,z; 2: x,z,y; 3: y,x,z; 4: y,z,x; 5: z,x,y; and 6: z,y,x.  The first
direction index is advanced most rapidly and the last direction index is advanced
least rapidly.  In some cases, there can be a significant variation in the number of
iterations needed to achieve convergence, depending on the order of the directions
for the red-black renumbering.  We suggest that the user initially specify IDIREC =
1.  If this leads to a relatively large number of iterations (more than 10), then the user
should experiment with alternate choices to determine the one requiring the fewest
number of iterations for their particular problem. [Default value = 1]

EPSSLV  Tolerance on the relative residual for the conjugate-gradient solution of the matrix of
the difference equations.  We suggest that the user initially specify EPSSLV ≤ 10-5.
An adequately small value of EPSSLV has the property that a smaller value does not
change the numerical solution within the number of significant digits desired by the
user.  In the single-precision code implemented here, EPSSLV should not be less
than 10-7. [Default value = 10-5]

MAXIT Maximum number of iterations allowed for the iterative solution to the difference
equations for dispersive transport.  In most cases, MAXIT = 100 is satisfactory.
[Default value = 100]

Notes:

Entering a zero or out-of-range value for any of these five variables will cause the code to use the
indicated default value.
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FOR EACH SIMULATION:

 8.  Data:   NPNTCL  ICONFM  NPNTVL  IVELFM  NPNTDL  IDSPFM  {NPNTPL}

NPNTCL   Flag for frequency of printing concentration data.  If NPNTCL = -2, concentration
data will be printed at the end of every stress period; if NPNTCL = -1, data will be
printed at the end of every flow time step; if NPNTCL = 0, data will be printed at
the end of the simulation; if NPNTCL = N > 0, data will be printed every Nth
particle moves, and at the end of the simulation.  Initial concentrations are always
printed.  Solute budget and mass balance information are only printed every time
concentration data are saved.

ICONFM  Flag for output format control for printing concentration data.  If concentration data
are written to main output file (file type CNCA is not used), ICONFM represents a
code indicating the format style (table 9, also see Harbaugh and McDonald, 1996a,
p. 19).  If concentration data are written to a separate output file (file type CNCA
exists), specifying ICONFM ≥ 0 will indicate that concentration data are to be
written as a matrix of values for each layer of the subgrid, whereas specifying
ICONFM < 0 will indicate that concentration data are to be written as a table of
values having one row for each node in the subgrid and four columns (x, y, z, and
concentration), where x, y, and z are the actual nodal coordinates in the length units
of the model simulation.  Note that we follow the MODFLOW convention in that y
increases from top to bottom row, and z increases from top layer to bottom layer.
Also note that the x and y values are given with respect to the entire MODFLOW
grid, but the z location is calculated only for vertical distances within the layers of
the transport subgrid.  If data are written in matrix style, one header line precedes
and identifies the data for each layer.  If data are written as a table of values, one
header line is written each time that concentration data are saved.

NPNTVL  Flag for printing velocity data.  If NPNTVL = -1, velocity data will be printed at the
end of every stress period; if NPNTVL = 0, data will be printed at the end of the
simulation; if NPNTVL = N > 0, data will be printed every Nth flow time steps, and
at the end of the simulation.

IVELFM  Specification for format of velocity data, if being printed in main output file (see table
9).

NPNTDL  Flag for printing dispersion equation coefficients that include cell dimension factors
(see section “Program Segments”).  If NPNTDL = -2, coefficients will be printed at
the end of every stress period; if NPNTDL = -1, coefficients will be printed at the
end of the simulation; if NPNTDL = 0, coefficients will not be printed; if NPNTDL
= N > 0, coefficients will be printed every Nth flow time step.

IDSPFM  Specification for format of dispersion equation coefficients (see table 9).

NPNTPL Flag for printing particle locations in a separate output file (only used if file types
“PRTA” or “PRTB” appear in the MOC3D name file).  If neither “PRTA” or
“PRTB” is entered in the name file, NPNTPL will be read but ignored (so you must
always have some value specified here).  If either “PRTA” or “PRTB” is entered in
the name file, initial particle locations will be printed to the separate file first,
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followed by particle data at intervals determined by the value of NPNTPL.  If
NPNTPL = -2, particle data will be printed at the end of every stress period; if
NPNTPL = -1, data will be printed at the end of every flow time step; if NPNTPL =
0, data will be printed at the end of the simulation; if NPNTPL = N > 0, data will be
printed every Nth particle moves, and at the end of the simulation.  Only specify if
MOC or MOCIMP is active.

Table 9.  Formats associated with MOC3D print flags.  (Positive values for wrap format;
negative values for strip format.  Also see Harbaugh and McDonald, 1996a, p. 19.)

Print flag Format Print flag Format Print flag Format

0 10G11.4 7 20F5.0 14 10F6.1

1 11G10.3 8 20F5.1 15 10F6.2

2 9G13.6 9 20F5.2 16 10F6.3

3 15F7.1 10 20F5.3 17 10F6.4

4 15F7.2 11 20F5.4 18 10F6.5

5 15F7.3 12 10G11.4

6 15F7.4 13 10F6.0

FOR EACH SIMULATION:

9.  Data:   CNOFLO Concentration associated with inactive cells of subgrid (used for
output purposes only).

FOR EACH LAYER OF THE TRANSPORT SUBGRID:

10.  Data:   CINT(NSCOL,NSROW) Initial concentration.
   Module:   U2DREL*

FOR EACH SIMULATION, ONLY IF TRANSPORT SUBGRID DIMENSIONS ARE
SMALLER THAN FLOW GRID DIMENSIONS:

11.  Data:   CINFL(ICINFL) ′ C  to be associated with fluid inflow across the
boundary of the subgrid.

   Module:   U1DREL*

Notes:
The model assumes that the concentration outside of the subgrid is the same within each layer, so

only one value of CINFL is specified for each layer within and adjacent to the subgrid.  That is, the size of
the array (ICINFL) is determined by the position of the subgrid with respect to the entire (primary)

                                                
* Module is a standard MODFLOW input/output module.
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MODFLOW grid.  If the transport subgrid has the same dimensions as the flow grid, this parameter should
not be included in the input data set.  If the subgrid and flow grid have the same number of layers, but the
subgrid has fewer rows or fewer columns, ICINFL = NSLAY.  Values are also required if there is a flow
layer above the subgrid and/or below the subgrid.  The order of input is:  ′ C  for first (uppermost) transport
layer (if required); ′ C  for each successive (deeper) transport layer (if required); ′ C  for layer above subgrid
(if required); and ′ C  for layer below subgrid (if required).

FOR EACH SIMULATION:

12.  Data:   NZONES Number of zone codes among fixed-head nodes in transport subgrid.

       IF NZONES > 0:

     Data:   IZONE    ZONCON

IZONE Value identifying a particular zone.
ZONCON Source concentration associated with nodes in the zone defined by IZONE above.

Notes:
Zones are defined within the IBOUND array in the BAS Package of MODFLOW by specifying

unique negative values for fixed-head nodes to be associated with separate fluid source concentrations.
Each zone is defined by a unique value of IZONE and a concentration associated with it (ZONCON).
There must be NZONES lines of data, one for each zone.  Note that values of IZONE in this list must be
negative for consistency with the definitions of fixed-head nodes in the IBOUND array in the BAS
Package.  If a negative value of IBOUND is defined in the BAS package but is not assigned a concentration
value here, MOC3D will assume that the source concentrations associated with those nodes equal 0.0.

FOR EACH LAYER OF THE TRANSPORT SUBGRID IF MOC OR MOCIMP IS ACTIVE:

13.  Data:   IGENPT(NSCOL,NSROW) Flag to treat fluid sources and sinks as
either “strong” or “weak.”

   Module:   U2DINT*

Notes:
Where fluid source is “strong,” new particles are added to replace old particles as they are advected

out of that cell.  Where a fluid sink is “strong,” particles are removed after they enter that cell and their
effect accounted for.  Where sources or sinks are weak, particles are neither added nor removed, and the
source/sink effects are incorporated directly into appropriate changes in particle positions and
concentrations.  If IGENPT = 0, the node will be considered a weak source or sink; if IGENPT = 1, it will
be a strong source or sink.  See section on “Special Problems” and discussion by Konikow and Bredehoeft
(1978).

                                                
* Module is a standard MODFLOW input/output module.
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IF NODISP ≠ 1 (If dispersion is included in simulation):

14.    Data:    ALONG(NSLAY)    Longitudinal dispersivity.
     Module:    U1DREL*

15.    Data:    ATRANH(NSLAY)   Horizontal transverse dispersivity.
     Module:    U1DREL*

16.    Data:    ATRANV(NSLAY)   Vertical transverse dispersivity.
     Module:    U1DREL*

Notes:
Data sets 14-16 should include one value for each layer in subgrid.

FOR EACH SIMULATION:

17.    Data:    RF(NSLAY) Retardation factor (RF = 1 indicates no retardation).
     Module:    U1DREL*

Notes:
If RF = 0.0 in input, the code automatically resets it as RF = 1.0 to indicate no retardation.

FOR EACH LAYER OF TRANSPORT SUBGRID:

18a.   Data:    THCK(NSCOL,NSROW)   Cell thickness.
     Module:    U2DREL*

18b.   Data:    POR(NSCOL,NSROW)    Cell porosity.
     Module:    U2DREL*

Notes:
The thickness and porosity are input as separate arrays for each layer of the transport subgrid.  The

sequence used in data set 18 is to first define the thickness of the first layer of the transport subgrid, and
then define the porosity of that same layer.  Next, that sequence is repeated for all succeeding layers.  The
product of thickness and porosity should not be allowed to vary greatly among cells in the transport subgrid.
If the ELLAM option is being used, the variation in thickness (not thickness times porosity) between
neighboring cells within a layer should be small.

                                                
* Module is a standard MODFLOW input/output module.
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Source Concentration in Recharge File (CRCH)

Concentrations in recharge, if the recharge package is used, are read from a separate unit
specified in the MOC3D name file.  This is defined using the file type (Ftype) “CRCH.”

FOR EACH STRESS PERIOD, IF RECHARGE PACKAGE USED:

 1.  Data:   INCRCH    Flag to reuse or read new recharge concentrations.

Notes:
Read new recharge concentrations if INCRCH ≥ 0.  Reuse recharge concentrations from the last

stress period if INCRCH < 0.

 2.  Data:   CRECH(NSCOL,NSROW)  Source concentration associated with fluid
entering the aquifer in recharge.

   Module:   U2DREL*

Observation Well File (OBS)

Nodes of the transport subgrid can be designated as “observation wells.”  At each such
node, the time, head, and concentration after each move increment will be written to a separate
output file to facilitate graphical postprocessing of the calculated data.  The input file for specify-
ing observation wells is read if the file type (Ftype) “OBS” is included in the MOC3D name file.

FOR EACH SIMULATION, IF OBS PACKAGE USED:

 1.  Data:   NUMOBS    IOBSFL

NUMOBS  Number of observation wells.

IOBSFL  If IOBSFL = 0, well data are saved in NUMOBS separate files.  If IOBSFL>0, all
observation well data will be written to one file, and the file name and unit
number used for this file will be that of the first observation well in the list.

FOR EACH OBSERVATION WELL:

 2.  Data:   LAYER     ROW    COLUMN    UNIT

LAYER  Layer of observation well node.
ROW  Row of observation well node.
COLUMN  Column of observation well node.
UNIT   Unit number for output file.

Notes:
If NUMOBS>1 and IOBSFL = 0, you must specify a unique unit number for each observa-tion well

and match those unit numbers to DATA file types and file names in the MOC3D name file.  If IOBSFL>0,
you must specify a unique unit number for the first observation well and match that unit number to a DATA
file type and file name in the MOC3D name file.

                                                
* Module is a standard MODFLOW input/output module.
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APPENDIX B:  ANNOTATED INPUT DATA SET FOR EXAMPLE
PROBLEM

This example input data set is the one used to generate the solution for one of the cases in
the one-dimensional steady-state flow problem.  Parameter values are indicated in table 4 and
selected results are shown in figures 10 and 12 (this is the case of CELDIS = 1.0).  Several of the
following data files (finite.nam, finite.bas, finite.bcf, and finite.sip) are those required for
MODFLOW-96, and their formats are described by Harbaugh and McDonald (1996a).

In the data files shown below, the right side of some data lines includes a semi-colon
followed by text that describes the parameters for which values are given.  These comments
(including the semi-colon) are not read by the program because in free format the code will only
read the proper number of variables and ignore any subsequent information on that line.  This style
of commenting data files is optional, but users may find it helpful when preparing their own data
files.

Information pertaining specifically to ELLAM is highlighted by shading.

Following (enclosed in a border) are the contents of the MODFLOW name file for the
sample problem; explanations are noted outside of border:

File name:  finite.nam

list  16   finite.lst ← Designates main output file for MODFLOW

bas   95   finite.bas ← Basic input data for MODFLOW

bcf   11   finite.bcf ← Block-centered flow package

sip   19   finite.sip ← Input for numerical solution of flow equation

conc  33   fint_moc.nam ← Transport name file (turns transport “on”)

↑ ↑ ↑
  1             2              3 

1  Ftype (that is, the type of file)
2  Unit number
3  File name (name chosen to reflect contents of file)
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Following (enclosed in a border) are the contents of the basic package input data file for the
MODFLOW simulation of the sample problem; explanations are noted outside of border:

File name:  finite.bas
Finite:  Compare to Wexler program and MOC3D                  BAS Input ← 1
      NLAY      NROW      NCOL      NPER    ITMUNI ← 1
         1         1       122         1         1 ← 2
FREE  CHTOCH ← 3
         0         1      ; IAPART,ISTRT ← 4
        95         1(25I3)                                 3   ; IBOUND ← 5
 -1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 ← 5
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 -2 ← 5
      0.00                                            ; HNOFLO ← 6
        95       1.0(122F6.0)                     1   ; HEAD ← 7
  12.1 ← 7
 120.0           1        1.    ; PERLEN,NSTP,TSMULT ← 8
1  Two header lines of comments.  For convenience and clarity, the second line is used to label names of

parameters on subsequent line of file.
2  Flow grid dimensions, number of periods, and time units.
3  Options line
4  Flags for buffer array and drawdown calculations.
5  IBOUND identifiers (first line) and array
6  Head value assigned to inactive cells
7  Initial head information
8  MODFLOW time-step information

Following (enclosed in a border) are the contents of the block-centered flow package input
data file; explanations are noted outside of border:

File name:  finite.bcf

         1   0 0.0 0 0.0 0 0  ; ISS,flags         BCF Input ← 1

         0                    ; LAYCON ← 2

         0       1.0          ; TRPY ← 3

         0       0.1          ; DELR ← 4

         0       0.1          ; DELC ← 4

         0      0.01          ; TRAN

1  Flag for steady-state flow, flag for cell-by-cell flow terms, five flags related to wetting
2  Layer type
3  Anisotropy factor
4  Grid spacing information

Following (enclosed in a border) are the contents of the strongly implicit procedure
package input data file; explanations are noted outside of border:



56

File name:  finite.sip

500         5     ; MXITER,NPARM                SIP Input ← 1

1.   0.0000001     0     0.001   0 ; ACCL,HCLOSE,IPCALC,WSEED,IPRSIP ← 2

1  Maximum iterations, number of iteration parameters
2  Acceleration parameter, head change criterion, flag for seed, seed, printout interval for SIP

Following (enclosed in a border) are the contents of the MOC3D name file for the sample
problem; explanations are noted outside of border:

File name:  fint_moc.nam

clst     94     finite.out ← Designates main output file for MOC3D

ellam    96     finite.ell ← Main input data file for ELLAM

obs      44     finite.obs ← Input data file for observation wells

data     45     finite.oba ← Output file for observation well data

cnca     22     finite.cna ← Separate output file for concentration data (ASCII)

↑ ↑ ↑
   1                  2                3 

1  Ftype
2  Unit number
3  File name
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Following (enclosed in a border) are the contents of the main input data file for the
MOC3D simulation for the sample problem; selected explanations are noted outside of border:

File name:  finite.ell
One-dimensional, Steady Flow, No Decay, Low Dispersion: MOC3D (ELLAM) ← 1
    ISLAY1    ISLAY2    ISROW1    ISROW2    ISCOL1    ISCOL2 ← 1
         1         1         1         1         2       121 ← 2
         0      0.00       0.0 ; NODISP, DECAY, DIFFUS ← 3
   5 1 1 7                     ; NSCEXP,NSREXP,NSLEXP,NTEXP ← 4
       1.0         1           ; CELDIS, INTRPL ← 5
  0 -1 0 0 0 0 0 ; NPNTCL, ICONFM, NPNTVL, IVELFM, NPNTDL, IDSPFM, NPRTPL ← 6
       0.0                                         ; CNOFLO ← 7
         0       0.0 (122F3.0)                     ; initial concentration
         0       1.                                ; C' inflow
         2                                         ; NZONES to follow ← 8
        -1       1.0                               ; IZONE, ZONCON ← 8
        -2       0.0                               ; IZONE, ZONCON ← 8
         0       0.1                               ; longitudinal disp.
         0       0.1                               ; transverse disp. horiz.
         0       0.1                               ; transverse disp. vert.
         0       1.0                               ; retardation factor
         0       1.0                               ; thickness
         0       0.1                               ; porosity

1  Two header lines of comments.  For convenience and clarity, the second line is used to label names of
parameters on subsequent line of file.

2  Indices for transport subgrid
3  Flag for no dispersion, decay rate, diffusion coefficient
4  ELLAM parameters (exponents for NSC, NSR, NSL, and NT)
5  Courant number and interpolation method flag
6  Print flags
7  Value of concentration associated with inactive cells
8  Concentrations associated with fixed-head nodes (fixed head nodes are defined in the IBOUND array in the

MODFLOW BAS package)

Following (enclosed in a border) are the contents of the observation well input data file for the
sample problem; explanations are noted outside of border:

File name:  finite.obs

  3  1                ;NUMOBS  IOBSFL     Observation well data ← 1
  1  1   2  45        ;layer, row, column, unit number ← 2
  1  1  42            ;layer, row, column ← 2
  1  1 112            ;layer, row, column ← 2

1  Number of observation wells, flag to print to one file or separate files
2  Node location and unit number for output file (linked to the Ftype DATA in MOC3D name file)
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APPENDIX C:  SELECTED OUTPUT FOR EXAMPLE PROBLEM

This example output was generated from the input data sets listed in Appendix B for a case
of the one-dimensional steady-state flow problem.  We do not include the main MODFLOW listing
(output) file.  The line spacing and font sizes of the output files have been modified in places to
enhance the clarity of reproduction in this report.  Some repetitive lines of output have been
deleted where indicated by an ellipsis (...).  Output related specifically to ELLAM is highlighted by
shading.

Some brief annotations were added to this sample output listing to help the reader
understand the purpose of various sections of output.  These annotations are written in bold italics.

Following are the contents of the MOC3D main output file (finite.out) for the sample
problem.

              U.S. GEOLOGICAL SURVEY
 METHOD-OF-CHARACTERISTICS SOLUTE-TRANSPORT MODEL
           MOC3D (Version 3.5) July 2000

 MOC BASIC INPUT READ FROM UNIT
 LISTING FILE: finite.out   UNIT  94

 OPENING finite.ell
 FILE TYPE: ELLAM   UNIT  96

 OPENING finite.obs
 FILE TYPE: OBS   UNIT  44

 OPENING finite.oba
 FILE TYPE: DATA   UNIT  45

 OPENING finite.cna
 FILE TYPE: CNCA   UNIT  22

 MOC BASIC INPUT READ FROM UNIT  96

2 TITLE LINES:
 One-dimensional, Steady Flow, No Decay, Low Dispersion: ELLAM
     ISLAY1    ISLAY2    ISROW1    ISROW2    ISCOL1    ISCOL2

PROBLEM DESCRIPTORS, INCLUDING GRID CHARACTERISTICS AND ELLAM INPUT INFORMATION:
      MAPPING OF SOLUTE TRANSPORT SUBGRID IN FLOW GRID:
 FIRST LAYER FOR SOLUTE TRANSPORT =   1      LAST LAYER FOR SOLUTE TRANSPORT  =   1
 FIRST ROW FOR SOLUTE TRANSPORT   =   1      LAST ROW FOR SOLUTE TRANSPORT    =   1
 FIRST COLUMN FOR SOLUTE TRANSPORT=   2      LAST COLUMN FOR SOLUTE TRANSPORT = 121

 NONUNIFORM DELCOL AND DELROW IN SUBGRID FOR SOLUTE TRANSPORT
 NO. OF LAYERS =    1   NO. OF ROWS =    1   NO. OF COLUMNS =  120

FILE INFORMATION
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 NO SOLUTE DECAY
 NO MOLECULAR DIFFUSION

 ELLAM INPUT PARAMETERS:
  NSCEXP, NSREXP, NSLEXP, NTEXP
      5       1       1      7
  NSC, NSR, NSL, NT (CALCULATED)
   32    2    2  128
    18288 ELEMENTS IN X ARRAY ARE USED BY MOC
 CELDIS=     1.0

NPNTCL=  0:     CONCENTRATIONS WILL BE WRITTEN AT THE END OF THE SIMULATION
MODFLOW FORMAT SPECIFIER FOR CONCENTRATION DATA: ICONFM= -1

NPNTVL=  0:         VELOCITIES WILL BE WRITTEN AT THE END OF THE SIMULATION
MODFLOW FORMAT SPECIFIER FOR      VELOCITY DATA: IVELFM=  0

NPNTDL=  0: DISP. COEFFICIENTS WILL NOT BE WRITTEN

CONCENTRATION WILL BE SET TO 0.00000E+00 AT ALL NO-FLOW NODES (IBOUND=0).

    INITIAL CONCENTRATION =  0.0000000E+00 FOR LAYER   1

VALUES OF C' REQUIRED FOR SUBGRID BOUNDARY ARRAY =    1
ONE FOR EACH LAYER IN TRANSPORT SUBGRID

ORDER OF C' VALUES: FIRST LAYER IN SUBGRID, EACH SUBSEQUENT LAYER,
LAYER ABOVE SUBGRID, LAYER BELOW SUBGRID:

  SUBGRID BOUNDARY ARRAY  =   1.000000

 NUMBER OF ZONES FOR CONCENTRATIONS AT FIXED HEAD CELLS =    2

 ZONE FLAG =   -1     INFLOW CONCENTRATION =   1.0000E+00
 ZONE FLAG =   -2     INFLOW CONCENTRATION =   0.0000E+00

         SINK-SOURCE FLAG =              0 FOR LAYER   1

 LONGITUDNL. DISPERSIVITY =  0.1000000

  HORIZ. TRANSVERSE DISP. =  0.1000000

   VERT. TRANSVERSE DISP. =  0.1000000

       RETARDATION FACTOR =   1.000000

        INITIAL THICKNESS =   1.000000     FOR LAYER   1

         INITIAL POROSITY =  0.1000000     FOR LAYER   1

COORDINATES FOR   3 OBSERVATION WELLS:

  WELL #   LAYER     ROW  COLUMN    UNIT
       1       1       1       2      45
       2       1       1      42      45
       3       1       1     112      45

 OUTPUT

 CONTROL

 INITIAL AND

 BOUNDARY

 CONDITIONS

 FOR SOLUTE
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ALL OBSERVATION WELL DATA WILL BE WRITTEN ON UNIT  45

CONCENTRATION DATA WILL BE SAVED ON UNIT  22 IN X,Y,Z,CONC FORMAT

CALCULATED VELOCITIES (INCLUDING EFFECTS OF RETARDATION, IF PRESENT):

EFFECTIVE MEAN SOLUTE VELOCITIES IN COLUMN DIRECTION
                          AT NODES

1
  VELOCITY (COL)   IN LAYER  1 AT END OF TIME STEP  1 IN STRESS PERIOD  1
  -----------------------------------------------------------------------

            1           2           3           4           5           6           7...
...
   ................................................................................  ...
   1   0.1000      0.1000      0.1000      0.1000      0.1000      0.1000      0.1000...

...

EFFECTIVE MEAN SOLUTE VELOCITIES IN ROW DIRECTION
                          AT NODES

1
  VELOCITY (ROW)   IN LAYER  1 AT END OF TIME STEP  1 IN STRESS PERIOD  1
  -----------------------------------------------------------------------

           1          2          3          4          5          6          7          8          9      ...
...
 ........................................................................................................ ...
   1   0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  ...

...

EFFECTIVE MEAN SOLUTE VELOCITIES IN LAYER DIRECTION
                          AT NODES

1
  VELOCITY (LAYER) IN LAYER  1 AT END OF TIME STEP  1 IN STRESS PERIOD  1
  -----------------------------------------------------------------------

           1          2          3          4          5          6          7          8          9      ...
...
 ........................................................................................................ ...
   1   0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  0.000E+00  ...

...

 NUMBER OF MOVES FOR CELDIS CRITERIA:
       120

          TIME STEP    1 IN STRESS PERIOD    1
          NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP  =  120
            MOVE TIME STEP (TIMV)=  1.000000000000E+00

           SOLUTE BUDGET AND MASS BALANCE FOR TRANSPORT SUBGRID
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      VALUES CALCULATED AT END OF:
               STRESS PERIOD    1  OUT OF    1
              FLOW TIME STEP    1  OUT OF    1
    TRANSPORT TIME INCREMENT  120  OUT OF  120

      ELAPSED TIME =  1.2000E+02

      CHEMICAL MASS IN STORAGE:
          INITIAL:   MASS DISSOLVED =  0.0000E+00     MASS SORBED =  0.0000E+00
          PRESENT:   MASS DISSOLVED =  1.0203E-01     MASS SORBED =  0.0000E+00

               CHANGE IN MASS STORED = -1.0203E-01

     CUMULATIVE SOLUTE MASS  (L**3)(M/VOL)
     ----------------------

          IN:
          ---
                     DECAY =  0.0000E+00
             CONSTANT HEAD =  0.0000E+00
          SUBGRID BOUNDARY =  1.2000E-01
                  RECHARGE =  0.0000E+00
                     WELLS =  0.0000E+00
                    RIVERS =  0.0000E+00
                    DRAINS =  0.0000E+00
     GENL. HEAD-DEP. BDYS. =  0.0000E+00
        EVAPOTRANSPIRATION =  0.0000E+00
      SPECIFIED FLOW (FHB) =  0.0000E+00

                  TOTAL IN =  1.2000E-01

         OUT:
         ----
                     DECAY =  0.0000E+00
             CONSTANT HEAD =  0.0000E+00
          SUBGRID BOUNDARY = -1.7972E-02
                  RECHARGE =  0.0000E+00
                     WELLS =  0.0000E+00
                    RIVERS =  0.0000E+00
                    DRAINS =  0.0000E+00
     GENL. HEAD-DEP. BDYS. =  0.0000E+00
        EVAPOTRANSPIRATION =  0.0000E+00
      SPECIFIED FLOW (FHB) =  0.0000E+00

                 TOTAL OUT = -1.7972E-03

         SOURCE-TERM DECAY =  0.0000E+00

                  RESIDUAL =  2.5183E-06

       PERCENT DISCREPANCY =  2.0986E-03 RELATIVE TO MASS FLUX IN

ITEMIZED BUDGETS

FOR SOLUTE

FLUXES
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Following (enclosed in a border) are the abridged contents of the observation well output
file for the sample problem.  This output file was generated using the option to write all
observation well data to a single file (IOBSFL = 1).

File name:  finite.oba

 "OBSERVATION WELL DATA"
 "TIME, THEN HEAD AND CONC. FOR EACH OBS. WELL AT NODE (K,I,J)"
 "  TIME:      H & C AT   1,  1,  2    H & C AT   1,  1, 42    H & C AT   1,  1,112 "
 0.0000E+00   0.000E+00   0.000E+00   0.000E+00   0.000E+00   0.000E+00   0.000E+00
 1.0000E+00   1.200E+01   2.587E-01   8.000E+00   8.100E-07   1.000E+00   1.887E-16
 2.0000E+00   1.200E+01   3.780E-01   8.000E+00   8.271E-06   1.000E+00   2.499E-15
 3.0000E+00   1.200E+01   4.558E-01   8.000E+00   4.364E-05   1.000E+00   2.128E-14
 4.0000E+00   1.200E+01   5.140E-01   8.000E+00   1.591E-04   1.000E+00   1.447E-13
 5.0000E+00   1.200E+01   5.606E-01   8.000E+00   4.519E-04   1.000E+00   8.378E-13
 6.0000E+00   1.200E+01   5.993E-01   8.000E+00   1.070E-03   1.000E+00   4.233E-12
 7.0000E+00   1.200E+01   6.322E-01   8.000E+00   2.202E-03   1.000E+00   1.971E-11
 8.0000E+00   1.200E+01   6.606E-01   8.000E+00   4.060E-03   1.000E+00   8.664E-11
 9.0000E+00   1.200E+01   6.856E-01   8.000E+00   6.853E-03   1.000E+00   3.646E-10
 1.0000E+01   1.200E+01   7.078E-01   8.000E+00   1.076E-02   1.000E+00   1.404E-09
...
...
 1.1100E+02   1.200E+01   9.955E-01   8.000E+00   9.428E-01   1.000E+00   5.284E-01
 1.1200E+02   1.200E+01   9.957E-01   8.000E+00   9.446E-01   1.000E+00   5.374E-01
 1.1300E+02   1.200E+01   9.958E-01   8.000E+00   9.463E-01   1.000E+00   5.464E-01
 1.1400E+02   1.200E+01   9.959E-01   8.000E+00   9.479E-01   1.000E+00   5.553E-01
 1.1500E+02   1.200E+01   9.960E-01   8.000E+00   9.495E-01   1.000E+00   5.640E-01
 1.1600E+02   1.200E+01   9.962E-01   8.000E+00   9.511E-01   1.000E+00   5.727E-01
 1.1700E+02   1.200E+01   9.963E-01   8.000E+00   9.526E-01   1.000E+00   5.813E-01
 1.1800E+02   1.200E+01   9.964E-01   8.000E+00   9.540E-01   1.000E+00   5.897E-01
 1.1900E+02   1.200E+01   9.965E-01   8.000E+00   9.554E-01   1.000E+00   5.980E-01
 1.2000E+02   1.200E+01   9.966E-01   8.000E+00   9.568E-01   1.000E+00   6.063E-01
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Following (enclosed in a border) are the partial contents of the separate ASCII output file
for concentration in a table format style.  Initial concentrations follow the first header line; final
concentrations follow the second (internal) header line.

File name:  finite.cna

CONCENTRATIONS AT NODES (X,Y,Z,CONC): IMOV=    0, KSTP=    0, KPER=    0, SUMTCH=0.0000E+00
  1.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  2.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  3.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  4.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  5.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  6.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  7.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  8.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
  9.5000E-01  5.0000E-02  5.0000E-01  0.0000E+00
...

  1.1650E+01  5.0000E-02  5.0000E-01  0.0000E+00
  1.1750E+01  5.0000E-02  5.0000E-01  0.0000E+00
  1.1850E+01  5.0000E-02  5.0000E-01  0.0000E+00
  1.1950E+01  5.0000E-02  5.0000E-01  0.0000E+00
  1.2050E+01  5.0000E-02  5.0000E-01  0.0000E+00
CONCENTRATIONS AT NODES (X,Y,Z,CONC): IMOV=  120, KSTP=    1, KPER=    1, SUMTCH=1.2000E+02
  1.5000E-01  5.0000E-02  5.0000E-01  9.9660E-01
  2.5000E-01  5.0000E-02  5.0000E-01  9.9667E-01
  3.5000E-01  5.0000E-02  5.0000E-01  9.9634E-01
  4.5000E-01  5.0000E-02  5.0000E-01  9.9600E-01
  5.5000E-01  5.0000E-02  5.0000E-01  9.9563E-01
  6.5000E-01  5.0000E-02  5.0000E-01  9.9524E-01
  7.5000E-01  5.0000E-02  5.0000E-01  9.9482E-01
  8.5000E-01  5.0000E-02  5.0000E-01  9.9438E-01
  9.5000E-01  5.0000E-02  5.0000E-01  9.9392E-01

...

  1.1650E+01  5.0000E-02  5.0000E-01  5.8604E-01
  1.1750E+01  5.0000E-02  5.0000E-01  5.8337E-01
  1.1850E+01  5.0000E-02  5.0000E-01  5.8129E-01
  1.1950E+01  5.0000E-02  5.0000E-01  5.7985E-01
  1.2050E+01  5.0000E-02  5.0000E-01  5.7913E-01


