Sources of Nutrients in the Nation's Watersheds

By

Richard A. Smith and Richard B. Alexander

Hydrologists U. S. Geological Survey Reston, Virginia

Presentation Outline

• Introduction: Objective/Problem

• Description of SPARROW

• Methods

• Results and Conclusions

Objective

To quantify nutrient sources in the nation's watersheds so as to display their relative effects on water quality.

Problem

The effects of nutrient sources on in-stream water quality is a function of **source inputs** <u>and</u> **watershed processes.**

Problem (Cont.)

Source inputs are documented, but watershed processes require a model. There are good arguments for including processes:

- Effects on sources are large
- Effects vary from source to source
- Many management variables affect processes

Desirable properties of the watershed model:

- Comprehensive of nutrient sources
- Nationally consistent
- Based on monitoring data (verified)
- Quantified reliability
- Scale independent

SPARROW

<u>SPA</u>tially <u>R</u>eferenced <u>R</u>egressions <u>On</u> <u>W</u>atershed Attributes

A statistical method for regional interpretation of water-quality monitoring data

Overview of SPARROW

- Regression of monitoring data on watershed characteristics
- Model is non-linear description of transport processes
- Separates land-to-water processes from in-stream processes
- Traces nutrients through stream network

Schematic of a Nested Basin

Downstream Monitoring Station

Nutrient Sources

- Point Sources
- Fertilizer
- Animal Agriculture
- Atmospheric Deposition
- Non-agricultural Runoff

Process Variables

- Land to Water
 - Temperature
 - Soil Permeability
 - Slope
 - Stream Density

- In-Stream Decay
 - Channel Size/Flow
 - Velocity
 - Reservoir
 Characteristics

Model Evaluation

- Conventional statistics (R², t statistics)
- Bootstrap estimation of model coefficients and predictions
- Verification of model predictions with independent observations
- Comparison of model coefficients with other published estimates

Results displayed for <u>Hydrologic</u> <u>**Cataloging Unit**</u> watersheds:

- Total of 2057 watersheds
- Widely recognized
- Systematically developed
- Spatially representative view of water quality conditions

Animal Agriculture Contributions to Total Nitrogen Export

Conclusions

- The relative importance of nutrient sources is best expressed in **in-stream** terms rather than "raw" **inputs.**
- SPARROW models provide reliable, scaleindependent estimates of the total N and total P contributions to watershed export from five categories of nutrient sources.

Conclusions (continued)

- The relative importance of different source categories varies greatly from one region to another.
- Point sources contribute little to nutrient export in most watersheds, but are the major source of total P in some densely-populated basins.

Conclusions (continued)

• Atmospheric deposition is the largest contributor to total N export in the northeastern U.S.

• Agricultural fertilizer is the largest contributor in most watersheds in the Ohio Valley and Midwestern U.S.

Conclusions (continued)

• Animal agriculture is also an important contributor of both TN and TP in many agricultural areas, but is generally a much larger contributor of total P than of total N.

SPARROW Web Page

http://water.usgs.gov/nawqa/sparrow/