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Abstract—Empirical regression models were developed for estimating concentrations of dieldrin, total chlordane, and total DDT
in whole fish from U.S. streams. Models were based on pesticide concentrations measured in whole fish at 648 stream sites
nationwide (1992-2001) as part of the U.S. Geological Survey’s National Water Quality Assessment Program. Explanatory variables
included fish lipid content, estimates (or surrogates) representing historical agricultural and urban sources, watershed characteristics,
and geographic location. Models were developed using Tobit regression methods appropriate for data with censoring. Typically,
the models explain approximately 50 to 70% of the variability in pesticide concentrations measured in whole fish. The models
were used to predict pesticide concentrations in whole fish for streams nationwide using the U.S. Environmental Protection Agency’s
River Reach File 1 and to estimate the probability that whole-fish concentrations exceed benchmarks for protection of fish-eating
wildlife. Predicted concentrations were highest for dieldrin in the Corn Belt, Texas, and scattered urban areas; for total chlordane
in the Corn Belt, Texas, the Southeast, and urbanized Northeast; and for total DDT in the Southeast, Texas, California, and urban
areas nationwide. The probability of exceeding wildlife benchmarks for dieldrin and chlordane was predicted to be low for most
U.S. streams. The probability of exceeding wildlife benchmarks for total DDT is higher but varies depending on the fish taxon and
on the benchmark used. Because the models in the present study are based on fish data collected during the 1990s and organochlorine
pesticide residues in the environment continue to decline decades after their uses were discontinued, these models may overestimate

present-day pesticide concentrations in fish.
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INTRODUCTION

Environmental residues of organochlorine pesticides such
as DDT, chlordane, and dieldrin have declined nationally in
whole freshwater fish from U.S. rivers [1] ([2]; http://pubs.
usgs.gov/circ/2005/1291) since uses of these pesticides were
discontinued decades ago [3]. For total DDT (the sum of DDT
plus its degradates), the steepest declines occurred during the
1970s, followed by a gradual leveling off. Similar trends were
observed for predator fish from the Great Lakes [4] and in
sediment cores from lakes and reservoirs [5]. These trends are
consistent with historical DDT use in the United States, which
peaked during the 1960s and was discontinued in 1972 [6].
For chlordane and dieldrin in fish, declines were more recent
(late 1970s to 1980s) and gradual [2], and chlordane trends in
lake sediment cores were variable [5]—consistent with the
regulatory history of these pesticides. Agricultural uses of
chlordane, dieldrin, and aldrin (which degrades to dieldrin in
the environment) were cancelled during the early 1970s,
but their use for termite control continued through the late
1980s [3,7] ([8]; http://www.epa.gov/greatlakes/bns/pesticides/
finalpestreport.html). As discussed for lake sediment cores
([91; http://pubs.usgs.gov/circ/2005/1291), the apparent ex-
ponential decline in organochlorine pesticide concentrations
in fish does not represent a specific fate process but reflects
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the rate of change over time as a consequence of reduced input,
chemical transformation, and dilution. The slow rate of recent
decline in organochlorine pesticides residues in fish suggests
the continued existence of sources, such as contaminated soil
transported to streams by runoff [6,10,11].

The legacy organochlorine pesticides had their registrations
cancelled because of their persistence, tendency to bioaccu-
mulate, carcinogenicity, and hazard to wildlife [3,12]. They
also induce the monooxygenase enzymes [13] and have been
associated with fish diseases [14], endocrine and reproductive
changes [15], and immunosuppressive effects [16]. Despite
nationally declining trends, there is potential for remaining
organochlorine residues to adversely affect aquatic life and
wildlife, especially given the uncertainty in thresholds for ad-
verse effects [17,18]. Organochlorine pesticides were widely
detected in fish and sediment from U.S. streams during the
1990s, and concentrations in some areas were high compared
with environmental benchmarks [2] (Supporting Information
Table S1; http://dx.doi.org/10.1897/08-508.S1). Over 80% of
whole-fish samples and over 50% of bed sediment samples
collected by the U.S. Geological Survey (USGS) National Wa-
ter Quality Assessment (NAWQA) Program from 1992 to 2001
contained organochlorine pesticide residues. Moreover, con-
centrations in whole fish exceeded benchmarks for the pro-
tection of fish-eating wildlife in approximately 20 to 75% of
streams, depending on which wildlife benchmarks were used.
Most exceedances were caused by total DDT (Supporting In-
formation Table S1; http://dx.doi.org/10.1897/08-508.S1).

The continued occurrence of organochlorine pesticides in
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streams, combined with potential for adverse effects, makes
it important to assess present-day exposure and evaluate con-
centrations in relation to levels of potential concern. However,
the high cost of sampling and analysis is a deterrent to needed
studies and monitoring, especially as organochlorine pesticide
residues continue to decline nationally and other priorities in
contaminant monitoring and assessment compete for available
resources.

The use of models to predict pesticide concentrations offers
an alternative to monitoring for broad-scale assessment and a
guide for selective monitoring. Previous studies have inves-
tigated the relationship between land use and the presence of
organochlorine pesticides in sediment or biota [19-21]. Sev-
eral studies used regression models to predict concentrations
of dissolved pesticides in streams from watershed character-
istics, estimates of past use, or both [22-24] ([25]; http://
pubs.usgs.gov/wri/wri034047). A previous report from the
present study describes a preliminary regression model for
dieldrin in whole fish from U.S. streams ([26]; http://pubs.
usgs.gov/sir/2006/5020).

The purpose of the present study is to describe the devel-
opment and application of regression models for predicting
concentrations of dieldrin, total chlordane, and total DDT in
whole fish from U.S. streams. The specific objectives are to
evaluate relationships between concentrations in fish tissue and
various explanatory factors, such as historical use patterns,
watershed characteristics, and geographic location; derive
best-fit regression models to quantify the relationships; and
apply the regression models to produce a national assessment
of the predicted distributions of pesticide concentrations in
whole fish and the areas of potential concern that merit more
detailed examination.

MATERIALS AND METHODS

Regression models were developed from data on organo-
chlorine pesticide concentrations in fish collected from 1992
to 2001 as part of the NAWQA Program, combined with na-
tionally available data on potential sources and watershed char-
acteristics. Detailed information is provided elsewhere on pes-
ticide sampling methods [2] and model-development proce-
dures [26].

The present study focuses on the three most commonly
detected pesticides or pesticide groups, which include degra-
dates and by-products as well as parent pesticides, in fish. The
most commonly detected was total p,p’-DDX, defined as the
sum of p,p" isomers of DDT and its degradates dichlorodi-
phenyldichloroethylene (DDE) and dichlorodiphenyldichlo-
roethane (DDD); one or more components of p,p’-DDX was
detected in approximately 80% of fish samples in the model-
development data set. The next most commonly detected were
total chlordane (the sum of cis-chlordane, frans-chlordane, cis-
nonachlor, and trans-nonachlor) and dieldrin, which were de-
tected in 47 and 36% of fish samples, respectively. Use of
these three response variables in regression analysis provides
the most complete accounting of residues from the application
of DDT and tetrachlorodiphenylethane (TDE; also known as
DDD) combined; technical chlordane; and aldrin and dieldrin
combined, respectively. Total DDT was represented by the sum
of only the p,p’ isomers of DDT and its degradates because
the o,p’ isomers had low detection frequencies and, on average,
constituted only 1% of summed o,p’- and p,p’-DDX concen-
trations in NAWQA fish samples. Models also were developed
for the individual components of total chlordane and total p,p’-
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DDX. These component models helped to identify outliers in
the model-development data and evaluate consistency in ex-
planatory variables but were not used for extrapolation and
are not discussed in detail.

A second set of fish regression models was developed in
which the measured pesticide concentration in bed sediment
(collected at the same site as fish) was considered as a potential
explanatory variable. The objective was to evaluate whether
data on pesticides in sediment improved the explanatory power
of the fish model, compared with using data on watershed
characteristics alone. These sediment-based fish models cannot
be used to predict fish concentrations in unmonitored streams
because measured sediment data are not available to support
a national extrapolation.

Model-development data for pesticides in fish

The NAWQA data used for model development consist of
chemical analyses of one composite whole-fish sample from
each of 648 stream sites in 43 hydrologic basins (study areas)
in the conterminous United States (Fig. 1). These sites rep-
resent a variety of land-use and environmental settings [2].
Typically, each site was sampled once between 1992 and 2001.
For sites where multiple fish samples were collected, only one
sample was selected. Preference was given to the fish sample
collected on the same date as bed sediment, to commonly
sampled fish taxa, or both [26]. Each fish sample was a com-
posite of five to eight individual whole fish of the same taxon
collected on a single date. Fish taxa were selected from a
National Target Taxa List [27]. The national data represent 57
fish taxa, of which the most common are common carp (29%
of samples) and white sucker (26%). Fish sampling sites are
shown in Figure 1, with sites color-coded by fish taxon.

Fish samples were analyzed for organochlorine pesticide
compounds at the USGS National Water Quality Laboratory
in Denver, Colorado. Fish samples were homogenized, and a
subsample was dried and Soxhlet-extracted with dichloro-
methane. An aliquot of the extract was removed for lipid de-
termination. The extract was cleaned by gel permeation chro-
matography, solvent-exchanged to hexane, fractionated using
alumina/silica adsorption chromatography, and analyzed by
gas chromatography with electron capture detection [28]. The
reporting level for individual organochlorine compounds in
fish was 5 pg/kg. The reporting levels for total p,p’-DDX (15
prg/kg) and total chlordane (20 pg/kg) were calculated by sum-
ming reporting levels for their individual components.

Bed sediment samples were collected on the same date as
fish samples for 49% of sites, within one year for 86% of sites,
and within three years for the remainder. Sediment samples
were composites of fine-grained sediment (sieved to <2 mm)
collected from multiple depositional areas within a stream
reach on a single date, typically during low-flow conditions
([29]; http://water.usgs.gov/nawqa/pnsp/pubs/ofr94-458), and
analyzed for organochlorine pesticides by gas chromatography
with electron capture detection ([30]; http://nwql.usgs.gov/
OFR-95-140.shtml).

Three slightly different model-development data sets were
used, one each for dieldrin, chlordane-group, and DDT-group
models. With the original data set (648 sites), preliminary
models were developed, and regression diagnostics (described
below in the Model development section) were used to identify
sites that were outliers in one or more models. Outliers were
dropped from each data set as appropriate. A few outlier sites
were deleted from all three model-development data sets if
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TAXON
e Carps and minnows (192)

e  Sculpins (37)

o Largescale suckers (22)

@  White suckers (173)

o Others (224)

— NAWAOQA study area boundary

Fig. 1. National Water Quality Assessment (NAWQA) Program sites in the model-development data sets for pesticides in whole fish. The 648
sites are color-coded by the taxon of the fish sampled at each site. The others category represents 53 taxa. The number of samples for each
taxon is shown in parentheses. Study unit boundaries are shown in blue. Inset, U.S. Department of Agriculture (USDA) farm production regions
[32]. Appa = Appalachian; Corn = Corn Belt; Delt = Delta States; Lake = Lake States; Mtn = Mountain; NE = Northeast; NPla = Northern

Plains; Pac = Pacific; SE = Southeast; SPla = Southern Plains.

warranted by extreme sample or site characteristics (such as
extremely high or low fish lipid content or a history of dredging
in the stream). The dropped sites made up less than 3% of the
total stream sites. Restoring the outliers to the data sets did
not change the regression coefficients substantially (relative
percent difference <10, usually <5%). Without the outliners,
the model fit improved slightly (the proportion of the variation
explained increased by 6%, and the standard deviation of the
residual error decreased by 6%, on average).

Explanatory variables

Factors that could affect pesticide use or transport were
considered as potential explanatory variables. Potential vari-
ables are listed with their data sources in Supporting Infor-
mation Table S2 (http://dx.doi.org/10.1897/08-508.S2) and de-
scribed in more detail in Nowell et al. [26]. Some potential
explanatory variables were characteristics of the fish sample;
others represented past sources of the pesticide in the basin,
watershed characteristics, or geographical region. Variable
names are shown in italics.

Fish sample characteristics. Three types of variables rep-
resent fish sample characteristics:

Fish lipid content (in percent) was considered because of
its generally high correlation with organochlorine pesticide
residues in fish (p = 0.0001).

Time is defined as the number of years elapsed from 1966
(representing the period of peak organochlorine use) to the
sampling date. Because the present study spanned a 10-year
period, samples collected late in the study period may have
undergone greater pesticide degradation or dissipation than
samples collected earlier.

Eight taxon variables (e.g., carp) were created to represent
the most common fish taxa in the model-development data set.
Each is a dummy variable, populated by either 1 or 0, de-
pending on the sample taxon. Because organochlorine pesti-
cide bioaccumulation in fish varies with taxon [6], taxon var-

iables were intended to represent species-specific character-
istics that could affect pesticide concentrations and were not
already accounted for by differences in fish lipid content.

Source variables. Several variables represent estimates (or
surrogates) of past sources of pesticides in the drainage basin.

Historical agricultural use intensity in the basin was es-
timated for aldrin and dieldrin combined (for use in the dieldrin
model), chlordane (for chlordane-group models), and DDT and
TDE combined (for DDT-group models) on the basis of re-
gional application rates and county-level harvested crop acre-
age (G.P. Thelin, U.S. Geological Survey, Sacramento, CA,
July 13, 2004, personal communication), as described in Sup-
porting Information S3 (http://dx.doi.org/10.1897/08-508.
S3) (with references in Supporting Information S4; http://
dx.doi.org/10.1897/08-508.S4). Estimates are designed to rep-
resent use during the 1960s, so regional application rates are
based on U.S. Department of Agriculture (USDA) data on
pesticide use by farmers in 1966 or 1971 [31,32]. Harvested
crop acreage data are from the 1964 and 1969 Census of Ag-
riculture [33]. Agricultural use estimates for pesticides in the
present study are shown in Figure 2. Distinct changes in ag-
ricultural use intensity sometimes occur along state bound-
aries (Fig. 2A—C) because regional application rates are based
on USDA farm production regions (Fig. 1, inset), which follow
state boundaries.

The termite-urban score is a surrogate representing past
termiticide use [26]. Aldrin, dieldrin, and chlordane were used
in subterranean termite control through the late 1980s [7,8,34],
but quantitative use data are not available at the county or
regional scales. The termite-urban score was calculated by
multiplying the urban land within the basin (1970s) by a
weighting factor corresponding to the zone of subterranean
termite density (Supporting Information S3; http://dx.doi.
org/10.1897/08-508.S3). The 1970s land-use information was
derived from the USGS’s Land Use and Land Cover data
(http://edc.usgs.gov/products/landcover/lulc.html, as enhanced
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Average agricultural use of
aldrin plus dieldrin in pounds of active
ingredient per square mile

[ <0.334

[ 0.334-0.942

[ 0.943-2.697

[ 2.698-6.243

I =6.244

Average agricultural use of
DDT plus TDE in pounds of active
ingredient per square mile

[ <0.752

[ 0.752-4.604
[ 4.605-17.496
1 17.497-73.111
I =73.112
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Average agricultural use of
chlordane in pounds of active
ingredient per square mile

[ <0.031

[ 0.031-0.104

1 0.105-0.284

1 0.285-0.681

B =0.682

Termite density zones B Urban areas
[ None to slight
[ Slight to moderate
[ Moderate to heavy
X Very heavy

Fig. 2. National distribution of some key explanatory variables from organochlorine pesticide models in fish. Historical agricultural use intensity
of (A) aldrin plus dieldrin, 1966; (B) chlordane, 1971 (1966 for AR, LA, MS); (C) DDT plus TDE, 1966; (D) urban land during the 1970s and
zone of subterranean termite density, which are combined in the fermite-urban score. Italics indicate variable names. See Supporting Information
for variable derivation (Supporting Information S3; http://dx.doi.org/10.1897/08-508.S3) and source references (Supporting Information S4;
http://dx.doi.org/10.1897/08-508.54). TDE = tetrachlorodiphenylethane.

by http://pubs.usgs.gov/ds/2006/240), which henceforth is
called the 1970s Geographic Information Retrieval and Anal-
ysis System (GIRAS) data (after the digital file storage format
and software system used to develop the data). Subterranean
termite distribution zones are from Beal et al. [35]. Figure 2D
shows the national distribution of urban land (1970s GIRAS
data) and the subterranean termite density zones.

Other source variables include various surrogates for ag-
ricultural use (e.g., cropland and pasture); urban use (e.g.,
population density); and minimal use (e.g., forested land),
which represent parts of the basin where pesticide application
was expected to be lower than that in developed areas. All
land-use variables are based on 1970s GIRAS data (described
above), and population density is from the 1990 Census of
Population and Housing [36].

Watershed variables. Many watershed characteristics that
may affect pesticide fate and transport were considered as
potential explanatory variables (Supporting Information Table
S2; http://dx.doi.org/10.1897/08-508.S2). These include soil
characteristics such as mean soil organic matter content in
the basin and R factor (rainfall erosivity from the Universal
Soil Loss Equation), physical features such as drainage basin
area, hydrologic parameters such as mean annual runoff, cli-
mate variables such as mean annual precipitation, and agri-
cultural management practices such as irrigated land in the
basin. All watershed variables are available for the conter-
minous United States.

Geographical region. Regional variables were used to rep-
resent any regional differences not accounted for by previously
selected source and watershed variables. Ten regional variables
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(e.g., Southern Plains) correspond to the 10 USDA farm pro-
duction regions [32] (Fig. 1, inset and Supporting Information
Table S2; http://dx.doi.org/10.1897/08-508.52). Regional vari-
ables are dummy variables, populated by either 1 or 0; each site
was assigned to one primary region, defined as the region con-
taining the largest percentage of the watershed area for that site.

Sediment variables. Sediment variables (which reflect mea-
sured pesticide data in sediment collected at the same site as
the fish) were considered only in sediment-based fish models.
There are three types of sediment variables: The fish-sediment
date (the difference between the fish and sediment sampling
dates, in days); sediment organic carbon content (in grams
per kilogram); and a series of dummy variables reflecting the
pesticide concentration measured in sediment (not detected,
detection <10 pg/kg, 10 to <100 pglkg, and =100 ug/kg
dry wt in sediment), each populated by either 1 or 0. Although
approximately half of the sites had their corresponding fish
and sediment samples collected on different dates, the fish-
sediment date variable was not selected in any sediment-based
models.

Model development

In many samples, pesticide concentrations were reported as
less than a detection threshold (nondetections), resulting in cen-
sored data for the response variable. Because conventional least-
squares regression methods yield biased and inconsistent esti-
mates with censored data [37], Tobit regression methods (also
called maximum likelihood methods) were used. These methods
provide parameter estimates of a censored linear model when the
regression residual errors are independent and identically and
normally distributed and have finite variance and a mean of zero
[38]. For total chlordane and total p,p’-DDX models (in which
the response variable represents summed concentrations of four
and three components, respectively), the method was modified
to include interval censoring. This entails computing two values
for the response variable—a lower bound (with concentrations
summed assuming censored values equal to zero) and an upper
bound (with concentrations summed assuming censored values
equal to the reporting level). For example, for a sample containing
20 pg/kg p,p'-DDE, 10 pg/kg p,p'-DDD, and <5 pg/kg p,p’'-
DDT, the interval censoring approach computes total p,p’-DDX
as between 30 and 35 pg/kg, not simply as the censored sum,
<35 pg/kg. When all three components are censored, the summed
concentration (response variable) was considered left-censored
and set equal to the sum of the reporting levels for all components
(for example, total p,p’-DDX would be <15 pg/kg for a sample
containing <5 pg/kg each of p,p’-DDE, p,p’-DDD, and p,p’-
DDT). Maximum likelihood methods implemented in the survreg
procedure ([39]; http:/mayoresearch.mayo.edu/mayo/research/
biostat/splusfunctions.cfm) in the statistical analysis program
S-PLUS® 7 (TIBCO Software) [40] were used to estimate the
parameters of the regression models.

In all models, the response variable is the log-transformed
concentration of the pesticide (or group) in whole fish (wet
wt). Many potential explanatory variables were transformed
(either logarithmic or square root) to minimize deviations from
the assumptions of the maximum likelihood method—that the
relationship between the variables is linear in the parameters
and the residual error is identically and normally distributed.

Measures of goodness of fit used in conventional least-
squares analysis—such as the multiple coefficient of deter-
mination (R?) and the standard deviation of the residual error—
cannot be computed exactly for the Tobit regression model.

L.H. Nowell et al.

Instead, a pseudo-R? (pR?) suitable for use in the Tobit re-
gression model was calculated using the method of Laitila [41].
As with conventional R?, pR? ranges from zero to one (also
expressed as 0 to 100%) and is an estimate of the proportion
of the variation in the response variable explained by the re-
gression model. The scale parameter, a low-biased estimate of
the standard deviation of the residual error, is also used. In
maximum likelihood estimation, scale provides only asymp-
totically unbiased estimates of the standard deviation of the
residual error when estimated from sample data [42], with bias
a function of sample size and degree of censoring.

Models were developed using a stepwise procedure similar
to stepwise regression, except that the Akaike information cri-
terion (AIC) [43] was used to select variables for inclusion in
the model. The AIC balances model goodness of fit with the
number of parameters needed to achieve that fit. Simpler mod-
els are favored over complex ones unless a complex model
substantially improves the fit. Models were developed in the
following four phases.

Phase 1. Source variables, fish lipid content, and time, which
were expected to be the most important in terms of explaining
the variance in concentrations among sites. For sediment-based
models, sediment variables also were considered.

Phase II. Taxon dummy variables, which could be important
if lipid content did not adequately account for differences in
bioaccumulation among fish taxa.

Phase I1I. Watershed variables, which have the potential to
affect contaminant fate and transport. These may contribute
to differences in contaminant concentrations measured in fish
from different watersheds, once differences between sources
and fish sample characteristics (lipid content and taxon) are
considered.

Phase IV. Regional dummy variables, which represent any
regional differences not accounted for by source estimates and
watershed characteristics.

During each phase, new variables were added, and the step-
wise AIC-based (stepAIC) procedure was applied to select
explanatory variables that produce the model that best de-
scribes the response variable data. Occasionally, the stepAIC
procedure selected two or more variables that were redundant
(i.e., derived from the same ancillary data set), highly corre-
lated with one another, or dependent (as indicated by high
condition index and variance decomposition proportions). In
this case, the variable with the lowest p value was retained,
and the other redundant, correlated, or dependent variable(s)
were eliminated from the model. At the end of the stepwise
procedure, a subsampling technique was used to reduce the
number of variables and to eliminate overfitting. A maximum
of six variables was selected in each model, as a practical
upper limit. Regression diagnostics available in the survreg
procedure in the S-PLUS program [40] were used to identify
influential observations and to aid in variable selection. These
diagnostics include leverage, deviance residuals, and several
diagnostics developed by Escobar and Meeker [44] for cen-
sored regression (case-weight, response, and shape parameter
perturbations).

The final models were cross-validated by dividing model-
development data randomly into two data subsets: a calibration
data set (containing 70% of the data) and a validation data set
(30% of the data). First, each model was fit to the calibration
data subset, and the predicted values and residuals were com-
puted for both the calibration data and the validation data
subsets. Then, the process was reversed, and the model was
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Fig. 3. Comparison of observed and predicted pesticide concentrations
for sites in the model-development data set. Predicted concentrations
are calculated using measured fish lipid values. The 1:1 line is shown.
(A) Dieldrin model: Red squares, detected concentrations. Black
squares, nondetections plotted as the reporting level. (B) Total chlor-
dane model and (C) total p,p’-DDX model: Red squares, the sum of
concentrations when all components are detected. Black squares, sam-
ples with no components detected, plotted as the sum of component
reporting levels. Blue line segments, range of possible concentrations
(from lower bound to upper bound; see text) when one or more, but
not all, components are detected. DDD = dichlorodiphenyldichlo-
roethane; DDE = dichlorodiphenyldichloroethylene; DDX = sum of
DDT, DDD, and DDE.

fit to the validation data subset. In all cases, there was little
difference in the predicted and residual errors obtained from
the two fitted models based on the different data subsets; com-
parison of boxplots showed comparable median and inter-
quartile range values (e.g., Fig. 3 in Nowell et al. [26]).

Extrapolation to all streams

Regression models for dieldrin, total chlordane, and total
p,p'-DDX were used to estimate concentrations in whole fish
for all streams in the conterminous United States. The network
of streams in the conterminous United States was defined by
the U.S. Environmental Protection Agency (U.S. EPA) River
Reach File 1 ([45]; http://water.usgs.gov/lookup/getspatial?
erfl_2). The River Reach File 1 (RF1) streams include over
600,000 miles of streams and more than 60,000 watersheds at
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a scale of approximately 1:500,000. For every watershed, val-
ues of the explanatory variables required by the regression
models were computed from nationwide data sources using
geospatial analysis tools. Because all models contain the var-
iable fish lipid content, all extrapolations must assume a spe-
cific lipid content value—in this case, the value used is 6.2%,
which is the average lipid content of the composite whole-fish
samples collected by the NAWQA Program from 1992 to 2001
[26] and the U.S. Fish and Wildlife Service’s National Con-
taminant Biomonitoring Program from 1970 to 1986 (http://
www.cerc.usgs.gov/data/ncbp/fish.htm). The regression model
then was used to estimate the concentration of the pesticide
in whole fish for the stream at the outlet of each watershed.
Because the response variable is a logarithmic transfor-
mation and the regression residuals were approximately nor-
mally distributed, concentrations predicted by the model (after
retransformation) approximate the median concentrations ex-
pected for sites that have a given set of explanatory values,
rather than mean concentrations. For example, for 10 water-
sheds with identical explanatory variables, the model will pre-
dict the same pesticide concentration for all 10 watersheds. In
actuality, the true concentrations are expected to be less than
the predicted value at half of the 10 watersheds and greater
than the predicted value at the other half. Thus, the median
response refers to the distribution of concentrations among
sites. Predicted concentrations were not adjusted for transfor-
mation bias [46,47] because estimates of site medians were
considered appropriate for the present study objectives.

Probability of exceeding wildlife benchmarks

The models can be used to estimate the probability that the
actual concentration at a site exceeds a certain concentration,
such as a benchmark for protection of wildlife. This probability
is a function of the predicted concentration for a site and the
model error (standard error). The standard errors were esti-
mated from the maximum likelihood scale parameter, using
the adjustment suggested by Aitkin [42]. Specifically, a pre-
diction interval (PI) is computed as follows:

(1

PI = |log(C,,) * SE,, X z(%)
where log(C.,) is the logarithm of the estimated pesticide con-
centration, #(a/2) is the point on Student’s ¢ distribution with
a probability of exceedance of one-half of «, and SE, is the
standard error of the estimated logarithm of concentration. This
means of assessing uncertainty in the logarithm of the pre-
dicted pesticide concentration (response variable) is approxi-
mate because it does not fully account for the effect of cen-
soring of the observed concentration data.

The probability that the actual concentration at a site will
exceed a certain concentration (P,,.) is approximated by al-
gebraically rearranging the formula for computing prediction
interval limits (Eqn. 1), as follows:

_ [og(G, — log(C.y)]
exc SECSl

2

where C, is the benchmark concentration. When the regression
residual error is normally distributed, the error distribution
about an estimated value of the response variable follows the
Student’s ¢ distribution. After antilogarithms have been com-
puted, however, the error distribution around the regression
line is no longer symmetric, and the variance is no longer
constant. Therefore, the magnitude of the uncertainty is greater
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Fig. 4. Variability in pesticide concentrations explained by different types of explanatory variables in fish regression models for dieldrin, total
chlordane and its four components, and total p,p’-DDX and its three components. Pseudo-R? (pR?) and scale were calculated using the methods
of Laitila [41] and Aitkin [42], respectively. DDD = dichlorodiphenyldichloroethane; DDE = dichlorodiphenyldichloroethylene; DDX = sum

of DDT, DDD, and DDE; R?, coefficient of multiple determination.

above the estimated concentration than it is below it, and it is
greater for higher concentrations than for lower concentrations
(Fig. 4 in Nowell et al. [26]).

The regression models were used to estimate the probability
that predicted pesticide concentrations would exceed appli-
cable benchmarks for protection of fish-eating wildlife, and
the national distribution of probabilities was mapped for
streams across the conterminous United States. This analysis
assumes 60.2% fish lipid content (to represent the mean whole-
body lipid content of all fish taxa) because wildlife consumes
various fish species and typically eats the entire fish. Predicted
organochlorine pesticide concentrations were compared with
a range of systematically derived wildlife benchmarks avail-
able from the literature, following Gilliom et al. [2]. The ranges
of benchmark values are 81 to 120 pg/kg for dieldrin, 300 to
4,200 pg/kg for total chlordane, and 6 to 200 wg/kg for total
DDT. The present study compares predicted concentrations
with both the high and low threshold values (called high bench-
mark and low benchmark) for a given pesticide—except that
for total p,p’-DDX the reporting level (15 pg/kg) was substi-
tuted for the low benchmark (6 pg/kg). Because the low bench-
mark was below the reporting level, the probability of ex-
ceeding this benchmark could not be reliably estimated using
the model. Technically, the total DDT benchmarks apply to
the sum of p,p’ plus o,p" isomers of DDT, DDD, and DDE.
Therefore, predictions for total p,p’-DDX (p,p’ isomers only)
from the present study may slightly underestimate benchmark
exceedances. However, use of total DDT benchmarks is rea-
sonable because total p,p'-DDX constitutes 99% (on average)
of total DDT concentrations in NAWQA fish samples.

RESULTS AND DISCUSSION
Regression models

Regression models for dieldrin, total chlordane, and total
p,p'-DDX explained 52 to 67% of the variability in concen-

trations in whole fish (Table 1). For these three models, Figure
3 shows the observed versus predicted pesticide concentrations
for sites in the model-development data set. For dieldrin (Fig.
3A), censored samples (nondetections) are plotted at the re-
porting level. For total chlordane (Fig. 3B) and total p,p'-DDX
(Fig. 3C), the concentration in partially censored samples—
which have detections for one or more, but not all, components
of the sum—is unknown but falls somewhere between a lower
bound (which assumes zero concentrations for nondetected
components of the sum) and an upper bound (which assumes
that nondetected components have concentrations equal to the
reporting level). This range is indicated by the blue line seg-
ments in Figure 3B and C. Left-censored samples (in which
all components are nondetected) have actual concentrations
somewhere between zero and the value plotted in Figure 3B
and C, which is the sum of the reporting levels for all com-
ponents.

Important explanatory variables

Fish lipid content and source variables representing past
agricultural and urban sources of pesticides were the most
important explanatory variables in all models, together ac-
counting for over three-quarters of the total variability ex-
plained by each model (Table 1 and Fig. 4). One or more
taxon, watershed, and/or regional variables were selected in
all models, but these tend to explain relatively little of the
variability in the response variables. Therefore, possible rea-
sons for their influence are speculative and are not discussed
below in detail.

Models for individual components of total chlordane and
total p,p'-DDX often have similar source and lipid variables
but poorer model performance (lower or comparable pR? and
higher scale) compared with models for total chlordane and
total p,p’-DDX. Although not discussed here in detail, com-
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Table 1. Regression models for dieldrin, total chlordane, and total p,p’-DDX in whole fish: Explanatory variables, model performance, and
percentage of censored data in the model-development data set*

Model performance

Attributed to source
variables only

Explanatory variables® Censored data (%)

Pesticide Overall Variability
compound Source Fish taxon Watershed Regional pseudo- Pseudo-  explained Left Interval
or group variables variables variables variables R? (%)° Scale R? (%)° (%) censored censored
Dieldrin? log(Lipid), log(OM) SPla 65 0.47 59 91 64 —
Aldrin+dieldrin use,
log(Termite+1),
Forest
Total log(Lipid), Carp log(Drainage), — 67 0.31 62 93 53 28
chlordane¢ Cropland, log(Irrigation +1)
log(Termite+1)
p.p'-DDX"  log(Lipid), Carp V/Rfact SPla 52 0.48 43 82 20 59
DDT+TDE use,
log(Popdensity+1)

2 Footnotes contain regression model equations. Data sources for variables are in Supporting Information Table S2 (http://dx.doi.org/10.1897/
08-508.S2), and references are in Supporting Information S4 (http://dx.doi.org/10.1897/08-508.54).

> Abbreviations (complete variable names are in italics): Aldrin+dieldrin use = agricultural use intensity of aldrin plus dieldrin (Ibs/mi?);
DDT+TDE use = agricultural use intensity of DDT plus TDE (Ibs/mi?); Cropland = cropland and pasture (percent of basin land); Drainage
= basin drainage area (km?); Forest = forested land (percent of basin land); Irrigation = irrigated land (percent of basin); log = logarithm;
Lipid = fish lipid content (percent); OM = mean soil organic matter content (percent by weight); Popdensity = population density (people
per km?); Rfact = mean R factor; SPla = Southern Plains region; TDE = tetrachlorodiphenylethane; Termite = termite-urban score; pg/kg
= microgram per kilogram wet weight; (—) represents none. One was added to some variables prior to transformation to avoid taking the
logarithm of zero.

¢ R> = multiple coefficient of determination.

4 Model: log(dieldrin concentration, pwg/kg) = —0.2050 + 1.0740 X log(Lipid) + 0.09111 X (Aldrin+dieldrin use) + 0.5246 X log(Termite+1)
— 0.0773 X VForest — 0.4827 X log(OM) + 0.2628 X (So Plain).

¢ Model: log(total chlordane concentration, pg/kg) = —0.134709 + 0.65579 X log(Lipid) + 0.00419 X (Cropland) + 0.71783 X log(Termite+1)
+ 0.15066 X (Carp) + 0.09490 X log(Drainage) — 0.19322 X log(Irrigation+ 1). Total chlordane is the sum of cis-chlordane, trans-chlordane,
cis-nonachlor, and frans-nonachlor.

fModel: log(total p,p’-DDX concentration, pg/kg) = 0.77912 + 0.71958 X log(Lipid) + 0.00698 X (DDT+TDE use) + 0.31874 X
log(Popdensity+1) + 0.38140 X (Carp) — 0.03187 X VRfact + 0.42418 X (SPla). p,p'-DDX is the sum of p,p’ isomers of DDT, DDD, and

DDE. (DDD = dichlorodiphenyldichloroethane; DDE = dichlorodiphenyldichloroethylene.)

ponent models are mentioned when relevant to explanations
of total chlordane and total p,p’-DDX models.

Dieldrin model. The dieldrin model explained 65% of the
variability in dieldrin concentrations in fish (Table 1). Most
was accounted for by agricultural use intensity of aldrin plus
dieldrin (which by itself explained 25% of variability), fish
lipid content (13%), termite-urban score (12%), and forested
land (9%). These source variables are consistent with the past
use history of aldrin and dieldrin, which were used in agri-
culture until the early 1970s and for termite control until the
late 1980s [3,6-8]. Forested land is a surrogate variable rep-
resenting minimal use and is the only source variable with a
negative regression coefficient. Two secondary variables, soil
organic matter and the Southern Plains region, explain an
additional 5% and 1%, respectively. All variables selected are
identical to those in a preliminary published model [26], al-
though the regression coefficients changed slightly in value
because some corrections were made in the model data de-
velopment set after the preliminary model was developed.

Total chlordane model. Of the 67% of total chlordane var-
iability in fish explained by this model (Table 1), most was
accounted for by the termite-urban score (34% of variability),
fish lipid content (21%), and cropland and pasture (7%). Past
chlordane use for termite control in the 1980s was higher
(Supporting Information Table S1; http://dx.doi.org/10.1897/
08-508.S1) and more recent than its use in agriculture, which
was discontinued in the early 1970s [3,6—-8]. The surrogate
variable cropland and pasture was selected over the estimated

agricultural use intensity of chlordane, perhaps because un-
certainty in the chlordane use estimate was high (Supporting
Information S3; http://dx.doi.org/10.1897/08-508.S3). Of the
three secondary variables in the model, drainage basin area
accounts for 5% of the variability, and carp and irrigation
each explain less than 1%.

Total p,p’-DDX model. This model explained 52% of the
variability in total p,p’-DDX concentrations in fish (Table 1).
Most was accounted for by agricultural use intensity of DDT
and TDE (19% of the variability), fish lipid content (14%),
and population density (10%). Selection of these source terms
is consistent with the past use of DDT in agriculture and for
disease vector control in urban areas [8]. The three secondary
variables selected were carp (5% of the variability), R factor
(3%), and Southern Plains (2%). Carp’s coefficient is positive,
so its presence in the model results in higher predictions for
carp compared with other fish taxa. The R factor (rainfall
erosivity)—selected in both total p,p’-DDX and p,p’-DDE
models—was the only watershed variable in any DDT-group
models.

The DDT-group models are notable because more of the
variability is explained by taxon variables and less by water-
shed variables than in all of the other models (Fig. 4). In
addition, the pR? is lower for DDT-group models compared
with other models, and the scale is higher (Fig. 4). These
differences suggest that the explanatory variables selected in
DDT-group models do not represent the source and/or fate
properties of the modeled pesticide compound(s) as effectively
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as the dieldrin and chlordane-group models do. It is possible
that taxon variables are important because lipid content may
not sufficiently account for species differences in total p,p’-
DDX bioaccumulation, which may be affected by trophic level
(e.g., [48]). Alternatively, each individual taxon has its own
national distribution (Fig. 1), so these terms may represent a
geographic correction. Note that the total p,p’-DDX model has
greater explanatory capability (higher pR?) and greater pre-
dictive capability (lower scale) than the model for the parent
compound, p,p’-DDT (Fig. 4). The total p,p'-DDX model ben-
efits from the interval censoring approach because there is less
left-censored data (20%) than in the p,p’-DDT model (75%).

Sediment-based models. When variables representing pes-
ticides in sediment were considered as potential explanatory
variables in fish models for dieldrin, total chlordane, and total
p,p'-DDX, one or more of these sediment-based variables were
selected. Dieldrin and total chlordane fish models each contain
one sediment variable (nondetections), whereas the total p,p’-
DDX model contains three (detection <10 wg/kg, =10 ug/
kg, and sediment organic carbon). Fish lipid content and most
source variables were retained in sediment-based models, but
forested land was dropped from the dieldrin model and pop-
ulation density was dropped from the total p,p’-DDX model
when sediment-based variables were present. There also were
changes in secondary (taxon, watershed, and regional) vari-
ables. With the incorporation of sediment-based variables into
the fish models, model performance improved slightly for total
p,p'-DDX—the pR? (now 59%) showed a 7% increase and the
scale a 6% decrease—but not substantially for dieldrin (pR?
decreased by 1% and scale by 2%) or total chlordane (pR?
increased by 4% and scale decreased by 1%).

National extrapolation and significance to wildlife

Because models for total chlordane and total p,p’-DDX both
contain the taxon variable carp, national extrapolations were
done separately for carp and noncarp fish taxa. Figure 5 shows
both pesticide concentrations in composite whole fish (6.2%
lipid) predicted by the model (Fig. SA, C, and E) and the
probability of concentrations exceeding wildlife benchmarks
(Fig. 5B, D, and F) for these pesticides: dieldrin in all taxa
(Fig. 5A and B), total chlordane in noncarp taxa (Fig. 5C and
D), and total p,p’-DDX in noncarp taxa (Fig. 5SE and F). Be-
cause the variable carp has a positive coefficient in models
for both total chlordane and total p,p’-DDX, predicted con-
centrations in carp (not shown) are somewhat higher than those
shown in Figure 5. Streams in Figure SA, C, and E are color-
coded to correspond to pesticide concentrations in whole fish
predicted by the model. In each case, the lowest category is
defined by the reporting level in the present study, and the
upper categories are based on the 50th and 90th percentiles of
predicted concentrations (by stream reach). In Figure 5B, D,
and E streams are color-coded according to the probability of
exceeding two wildlife benchmarks from the literature, the
high benchmark and low benchmark—except that in Figure
SF the probability of exceeding the reporting level (15 png/kg)
is used instead of the low benchmark (6 pg/kg), which is below
the reporting level. In model applications, the choice of bench-
mark typically is made in the context of study objectives. For
example, to identify streams with the highest probability of
adverse effects, it may be appropriate to compare predicted
concentrations with high benchmark values. However, low
benchmark values might be more appropriate for use as part
of a sensitive screening approach to identify watersheds with
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endangered species concerns. Because the present study takes
a screening approach, the probability maps in Figure 5 em-
phasize comparison with low benchmark values.

Dieldrin. The dieldrin model predicts (assuming 6.2% fish
lipid) that 72% of RF1 stream miles will have concentrations
in whole fish that are less than the 5 pg/kg reporting level
(Fig. 5A). The highest concentrations are predicted for streams
in the Corn Belt (where aldrin was heavily used on corn, Fig.
2A), Texas, Oklahoma, and scattered urban areas (where aldrin,
dieldrin, or both were likely used for termite control).

When predicted concentrations are compared to wildlife
benchmarks (still assuming 6.2% fish lipid), most U.S. stream
miles (92%) have less than a 5% probability of exceeding the
low benchmark for dieldrin (81 pg/kg), and 7% of stream miles
have a 5 to 50% probability of exceeding this same benchmark
(Fig. 5B). Although less than 1% of stream miles have more
than a 50% probability of exceeding the same low benchmark,
this 1% totals almost 2,400 stream miles and represents a
substantial portion of streams in the central Corn Belt. Red
streams are the most likely to show adverse effects on wildlife,
because these streams have more than a 50% probability of
exceeding the high benchmark (120 pg/kg).

Total chlordane. Whole-fish concentrations of total chlor-
dane (at 6.2% fish lipid) are predicted to be less than the 20
png/kg reporting level in 86% of U.S. stream miles for noncarp
taxa (Fig. 5C); this value is 78% of stream miles for carp,
which have slightly higher predicted concentrations (not
shown) than those in noncarp taxa (Fig. 5C). The highest pre-
dicted concentrations occur in the Corn Belt (where chlordane
was applied to corn, Fig. 2B); in Texas, Louisiana, and the
Southeast region (in the zone of highest termite density, Fig.
2D); and in urban areas across the country, including eastern
states from Virginia to Massachusetts (Fig. 2D).

Almost all (99%) stream miles have less than a 5% prob-
ability of exceeding the low benchmark for chlordane (300
rg/kg), in either carp (not shown) or noncarp fish taxa (Fig.
5D). The few streams with more than a 5% probability of
exceeding this benchmark tend to be located in scattered urban
areas within the two highest termite zones (Fig. 2D). No
streams have even a 5% probability of exceeding the high
benchmark (4,200 pg/kg).

Total p,p’-DDX. In contrast to the two previous models,
whole-fish concentrations of total p,p’-DDX are predicted to
be less than the 15 pg/kg reporting level in only 18 to 30%
of RF1 stream miles (for carp and noncarp taxa, respectively),
assuming 6.2% fish lipid. Predicted concentrations for carp
(not shown) are slightly higher than those for noncarp taxa
(Fig. SE). The highest predicted concentrations are in the
Southeast, Mississippi Delta states, Texas, and Oklahoma
(where DDT was heavily used on cotton; Fig. 2C and Sup-
porting Information Table S1; http://dx.doi.org/10.1897/
08-508.S1); in some agricultural areas (such as in California,
where DDT was used on a variety of crops); and in scattered
urban areas nationwide. Figure S5E shows a distinct boundary
along state lines separating Texas and Oklahoma from the
adjacent states, which is an artifact of the Southern Plains
variable in the model. It is reasonable to expect high predicted
concentrations in the Southern Plains states because of past
use in the region on cotton but not as pronounced of a de-
marcation across state lines as was predicted by the model.

For total DDT, available wildlife benchmarks span a wide
concentration range (6-200 ng/kg), so there is considerable
uncertainty in the threshold concentration for adverse effects
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A Predicted Concentrations B Probability of Exceeding Benchmarks
Predicted dieldrin concentration,
in wa/kg (wet weight) Probability of exceeding Probability of exceeding
—— >90th percentile (>10.9) High-Bmrk (120 pg/kg) Low-Bmrk (81 pg/kg)
RL to 90th percentile (5-10.9) —— >50% (565 stream mi) =50% (1,820 stream mi)
—— <RL(<5) 5-50% (48,730 mi)
—— <5% (598,851 mi)
Total Chlordane (Noncarp taxa)
Predicted total chlordane concentration, Probability of exceeding Prabability of exceeding
in wg/kg (wet weight) High-Bmrk (4,200 p.g/kg) Low-Bmrk (300 pg/kg)
— >90th percentile (>25.3) —— >50% (0 stream mi) — >50% (0 stream mi)
~~ RLto 90th percentile (20-25.3) 5-50% (2,388 mi)
— <RAL(<20) = —— <5% (647,578 mi)
Total p,p-DDX (Noncarp taxa)
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~—— =50th to 90th percentile (>21.5-49.3) 5-50% (77,193 mi)
RL to 50th percentile (15-21.5) — <5% (115,271 mi)
— <RL(<15)

Fig. 5. Predicted concentrations of pesticides in whole fish (at 6.2% lipid) from U.S. streams and probability that concentrations exceed wildlife
benchmarks. (A) Predicted concentrations and (B) probability of exceeding benchmarks for dieldrin in all fish taxa; (C) predicted concentrations
and (D) probability of exceeding benchmarks for total chlordane in noncarp taxa; and (E) predicted concentrations and (F) probability of exceeding
benchmarks for total p,p’-DDX in noncarp taxa. In panels A, C, and E, percentiles refer to predicted concentrations by stream reach. In panels
B, D, and E the number of stream miles is shown in parentheses for each probability category. Panel F shows the probability of exceeding the
reporting level instead of the low benchmark, which is below the reporting level. DDD = dichlorodiphenyldichloroethane; DDE = dichlorodi-
phenyldichloroethylene; DDX = sum of DDT, DDD, and DDE; High-Bmrk = high benchmark; Low-Bmrk = low benchmark; mi = miles; RL

= reporting level.
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on fish-eating wildlife. Over 70% of stream miles across the
United States have more than a 50% probability of exceeding
the reporting level—70% for noncarp taxa (Fig. 5F) and 82%
for carp (not shown)—and, therefore, of also exceeding the
low benchmark (6 wg/kg), which is less than the reporting
level (15 pg/kg). Red streams are the most likely to show
adverse effects, because these have more than a 50% proba-
bility of exceeding the high benchmark for total DDT (200
png/kg). Although these streams make up only 1 to 4% (for
noncarp taxa and carp, respectively) of the total stream miles
in the United States, they include a substantial proportion of
stream miles in the Southeast and Mississippi Delta states.

Comparatively, total p,p’-DDX in whole-fish tissue is a
much more widespread, continuing concern than dieldrin or
total chlordane, and the potential concern for dieldrin is more
widespread than that for chlordane. At least 70% of U.S. stream
miles (~500,000 stream miles) are predicted to have more
than a 50% probability of p,p’-DDX concentrations above the
low benchmark, compared with less than 1% of stream miles
(2,400 stream miles) for dieldrin and 0% for total chlordane.
Those streams with the greatest probability of exceeding
benchmarks are the highest priority for further investigation.

Fish with lipid content greater than 6.2% would likely have
higher pesticide concentrations, and therefore also a higher
probability of exceeding wildlife benchmarks, than shown in
Figure 5. The reverse is true for fish with lipid content lower
than 6.2%. In making predictions with the regression models,
the lipid content assumption should be appropriate for the
objectives of extrapolation. For example, one might assume a
lipid content appropriate for an individual fish taxon of interest,
such as largemouth bass (mean whole-body lipid content of
4.2%) or channel catfish (mean of 7.5%). At these lipid values,
the percentage of stream reaches with predicted dieldrin con-
centrations greater than 10.9 pg/kg would change from 10%
of stream reaches assuming 6.2% fish lipid content (shown as
red streams in Fig. SA) to 6% of stream reaches at 4.2% lipid
and to 12 to 13% of stream reaches at 7.5% lipid. Predicted
concentrations of dieldrin at two lipid values are shown in
Figure 7 of Nowell et al. [26].

The empirical regression models developed in the present
study have several limitations. There is considerable uncer-
tainty in the models—depending on the pesticide, approxi-
mately 30 to 50% of variability in pesticide concentrations in
fish was not explained by the model. The models can be applied
to make predictions only where ancillary data on watershed
characteristics are available (i.e., the conterminous United
States only) and where watersheds are delineated. Also, the
models apply to whole fish; this limits their applicability to
human exposure assessment, which typically is concerned with
contaminants in edible fish tissue. Moreover, because the mod-
els are based on data collected during the 1990s, future ap-
plications of the models may overestimate predicted pesticide
concentrations in fish, given that residues in fish are declining
nationally (albeit slowly) over time. The variable time (elapsed
time between 1966 and the sampling date) was not selected
as an explanatory variable in any of the final regression mod-
els, suggesting that time was not important over the 10-year
sampling period (1992-2001). Although the time variable was
initially selected by the stepAIC procedure in the total p,p’-
DDX model, it was subsequently dropped in favor of more
influential variables during model development. As expected,
time had a negative coefficient in this model when initially
selected, indicating declining residues over time.
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CONCLUSIONS

Nationally available estimates of past pesticide use and
watershed characteristics are useful explanatory variables for
regression modeling of legacy organochlorine pesticide con-
centrations in whole fish from U.S. streams. The most im-
portant variables in explaining variability were the fish lipid
content (measured) and source terms representing past agri-
cultural and urban uses in the basin. Particularly important
source terms are agricultural use intensity estimated from
USDA data on pesticide use by farmers in 1966 (in dieldrin
and total p,p’-DDX models); the termite-urban score, a sur-
rogate for past termiticide use (in dieldrin and total chlordane
models); and population density, a surrogate for general urban
use (in the p,p’-DDX model). The resulting empirical models
explained approximately 50 to 70% of the variability in con-
centrations of dieldrin, total chlordane, and total p,p’-DDX in
whole fish collected by the NAWQA Program from 648
streams from 1992 to 2001. This degree of explanatory power
is considerable, given that these models are based on data
aggregated for multiple species of fish; the pesticides being
modeled were not used in the United States for 5 to 30 years
prior to sample collection; and only those watershed charac-
teristics with nationally available data could be used as ex-
planatory variables. Predicted concentrations were nearly al-
ways within an order of magnitude of the measured concen-
trations for the model-development streams. Results from
cross-validation tests (in which one subset of the model-de-
velopment data was used to calibrate, and another subset to
validate, the model) were encouraging, but validation of the
regression models using independent data sets has not yet been
done.

National extrapolation to U.S. streams was performed by
applying the regression models to streams in U.S. EPA’s RF1
River Reach File, assuming a fish lipid content of 6.2% (to
represent average whole-body lipid content of all fish taxa).
Predicted concentrations are higher for total DDT than those
for dieldrin or total chlordane, and the probability of exceeding
wildlife benchmarks is also highest for total DDT. The vast
majority of stream miles have less than a 5% probability of
exceeding the most sensitive benchmarks for dieldrin (92% of
stream miles) and total chlordane (over 99%). For total DDT,
the wide range of available wildlife benchmarks (6-200 pg/
kg) results in considerable uncertainty as to which streams
have potential for adverse effects on aquatic life. Taking a
sensitive screening approach, 70 to 82% of stream miles (de-
pending on the fish taxon) have more than a 50% probability
of exceeding the most sensitive benchmark.

Future application of these regression models may over-
estimate pesticide concentrations in fish, given that environ-
mental residues continue to decline over time, decades after
the uses of these pesticides were discontinued. Nonetheless,
these models provide a cost-effective predictive tool to sup-
plement existing monitoring data, assess the need for further
monitoring, and guide the design and location of future sam-

pling.
SUPPORTING INFORMATION

Table S1. For organochlorine pesticides in the present
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