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ABSTRACT ity in the Glassboro, NJ area (Fig. 1). The Darcian
method was used to estimate groundwater rechargePoint estimates of groundwater recharge at 48 sediment-coring
from water-retention parameters and unsaturated hy-locations vary substantially (�18.5–1840 cm yr�1) in a 930-km2 area of

southern New Jersey. Darcian estimates of steady, long-term recharge draulic conductivity on the basis of sediment texture
made at depth in the unsaturated zone were estimated using pedo- and moisture content data obtained near the water table
transfer functions of soil texture and interpolated (mapped) with at 48 locations in the study area. The recharge estimates
nonparametric methods to assess aquifer vulnerability in the area. were geostatistically analyzed to evaluate the spatial
The probability of exceeding the median recharge (29.1 cm yr�1) is variability of measured sediment properties, to map re-
low in the southwestern and northeastern portions of the study area charge with respect to land use, and to derive statistical
and high in the eastern and southeastern portions. Estimated recharge

distributions of recharge at specific locations in the studyis inversely related to measured percentage clay and positively related
area. The recharge estimates were compared with soilsto the percentage of well-drained soils near wells. Spatial patterns of
and topographic data to determine whether rechargerecharge estimates, exceedance probabilities, and clay content indicate
could be accurately predicted from landscape character-that sediment texture controls recharge in the study area. Relations

with land elevation and a topographic wetness index were statistically istics. Finally, recharge estimates were compared with
insignificant. Nitrate concentration and atrazine (6-chloro-N2-ethyl- concentrations of NO3 and atrazine to evaluate potential
N4-isopropyl-1,3,5-triazine-2,4-diamine) percentage detection in sam- effects on the quality of shallow, recently recharged
ples of shallow groundwater (typically �10 m) are higher for low groundwater. In this study, “shallow groundwater” re-
recharge sites (�29.1 cm yr�1) than for high recharge sites (�29.1 cm fers to depths �10 m. The depth of the screened interval
yr�1) in agricultural and urban areas. Differences between high and below water in observation wells in the area is about
low recharge sites in these areas are highly significant for NO3 concen-

3 m. The objectives of the study were totration, but not for atrazine concentration.

• evaluate the spatial variability of point estimates
of ground-water recharge,

• map recharge with respect to land use, andNonpoint-source contamination is considered the
• compare recharge estimates with NO3 and atrazinesingle greatest threat to water quality (Corwin et

concentrations in shallow groundwater.al., 1997). Preventing contamination of groundwater is
crucial in areas where it is a major source of public and
domestic supply. Knowing where an aquifer is vulnera- MATERIALS AND METHODS
ble to surface-derived contaminants would help manag-

Description of Study Areaers prioritize scarce resources for alternative manage-
ment practices, monitoring, and cleanup. The study area (Fig. 1) comprises about 930 km2 within the

Coastal Plain Physiographic province of southern New Jersey.Aquifer vulnerability studies at large spatial scales
Population in the area has increased from about 50 000 peoplehave used index methods, such as DRASTIC and SEEP-
in 1940 to about 250 000 in 2000. Groundwater withdrawalsAGE (Navulur and Engel, 1996), or overlays made with
from the surficial, Kirkwood-Cohansey aquifer system, whichgeographic information systems (GISs) (Nolan et al.,
consists of highly permeable unconsolidated sands and gravels,1997). Both DRASTIC and SEEPAGE underestimated
have recently increased to meet the growing demand for drink-contamination potential by describing areas with high ing water. As of 1986, the Glassboro area comprised 21%

NO3 concentration as low risk (Navulur and Engel, urban land, 26% agricultural land, and 39% undeveloped land
1996). Index and overlay methods provide only limited (Stackelberg et al., 1997).
understanding of processes controlling the transport of The outcrop of the Kirkwood Formation, a confining unit
water and chemicals in the unsaturated zone. Alterna- about 30 m thick, underlies the aquifer and forms the north-

west boundary of the study area. Aquifer thickness increasestively, deterministic models can simulate water and
to about 75 m at the southeastern boundary (Zapecza, 1989).chemical fluxes, but the spatial variability of sediment
Unsaturated zone sediment in the study area consists mainlyproperties at field scales and above limits accuracy and
of the Cohansey Sand, which was deposited during the Mio-imposes large uncertainty on model predictions.
cene Age on inner shelf, nearshore, and beach areas duringIn the current study, we used a combined determinis-
slow retreat of the sea. Sediments in the Cohansey Sand gener-tic–geostatistical approach to assess aquifer vulnerabil- ally are coarser at shallower depths, which is consistent with
similarly deposited formations in the New Jersey Coastal Plain
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Fig. 1. Glassboro, NJ study area and outcrop of the Kirkwood-Cohansey aquifer.

hansey Sand in parts of the study area. This formation is and Exner, 1993). Additionally, NO3 concentrations of 4 mg
L�1 or more have been associated with increased risk of non-generally less than 3 m thick in the study area and consists of

coarse, pebbly orange sands deposited during late Tertiary Hodgkin’s lymphoma in Nebraska (Ward et al., 1996).
Groundwater recharge was estimated at 47 locations whereand Quaternary periods.

Groundwater in the study area was sampled with shallow sediment texture and moisture content data were collected
during installation of the shallow groundwater observationobservation wells installed about 3 m below the water table

(Stackelberg et al., 1997). Public supply wells and deeper ob- wells, and at one additional sediment-coring site, for a total
of 48 estimates (Baehr et al., 2003). In the current study, weservation wells were sampled in a later study (Stackelberg et

al., 2000) that described the migration of compounds to deeper analyzed the spatial variability of the recharge estimates to
better understand relations between recharge, spatial scale,parts of the aquifer, and related compound occurrence to

current and historical land-use patterns. Many compounds, landscape characteristics, and the quality of shallow ground-
water in the Glassboro area.including NO3, atrazine, desethylatrazine, simazine, meto-

lachlor, prometon, dieldrin, chloroform, and methyl tert-butyl
ether, were detected in these surveys. Groundwater quality in Point Recharge Estimatesthe study area depends on contributing land area, groundwater
age, and well type (shallow monitoring, moderate-depth moni- Groundwater recharge is the rate at which infiltrating water
toring, or public supply) and related construction characteris- moves across the water table. Greater amounts of infiltrating
tics (Kauffman et al., 2001). water might adversely affect water quality by transporting

The median concentration of NO3 in shallow groundwater more chemicals to shallow groundwater. Conversely, greater
beneath agricultural land in the study area is high (13 mg L�1) amounts of infiltrating water might attenuate contaminant
(Stackelberg et al., 1997). Median NO3 concentration is 2.6 concentrations through dilution, for a given chemical loading.
and 3.5 mg L�1 in new and old urban areas, respectively, Sediment cores were collected at 48 locations during the
and is 0.07 mg L�1 in undeveloped areas. The USEPA has summer and fall of 1996 to facilitate point estimates of re-
established a Maximum Contaminant Level of 10 mg L�1 NO3 charge. Well locations were randomly selected within major
as N (USEPA, 1995). Ingestion of NO3 by infants can cause land-use categories representing agricultural, new urban, old
low O2 levels in the blood, a potentially fatal condition known urban, and undeveloped lands. Samples representing promi-

nent sediment horizons were analyzed by optical diffractionas methemoglobinemia or “blue baby” syndrome (Spalding
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to determine percentages of sand, silt, and clay. These percent- cates q) was not assumed because uniformity in � is less likely
in a layered medium (Nimmo et al., 2002).ages were used with Rosetta, a program consisting of hierarchi-

cal pedotransfer functions (PTFs) (Schaap et al., 2001), to The recharge estimates are a snapshot in time and do not
incorporate potential seasonal changes or year to year climaticderive recharge estimates. Pedotransfer functions are com-

monly used in regional simulations of unsaturated-zone con- variability. However, temporal variability at depth is damp-
ened by physical averaging over several years such that ataminant transport (Görres and Gold, 1996; Petach et al., 1991;

Soutter and Pannatier, 1996) because of the difficulty and cost single measurement represents constant flux (Nimmo et al.,
2002). The median depth of the recharge calculations is 2.4 mof directly measuring soil hydraulic properties at numerous

locations at large spatial scales. Rosetta uses neural network and median unsaturated zone thickness is 3.8 m (Baehr et al.,
2003). The 2.4-m depth is greater than depths (0.6 m or less)analysis to extract as much information as possible from mea-

sured soils data (Schaap et al., 1998). Compared with regres- at which Bayless (2000) observed short-term variations in
moisture content and soil tension in glacial till in central Indi-sion, neural networks require no a priori model concept and

optimally relate input and output data using an iterative cali- ana. They measured soil tension profiles to assess hydraulic
gradients, and soil moisture following significant rainfall. Soilbration procedure. Rosetta input consists of sediment texture

(percentage sand, silt, and clay) with or without other proper- tension was fairly stable at depths of 0.9 to 1.5 m during the
period of data collection (May–September 1994), indicatingties such as bulk density, and the output comprises parameters

used in water-retention functions and calculations of partially reduced effects from short-term wetting and drying periods.
However, low-frequency (e.g., decadal) variations in moisturesaturated hydraulic conductivity. Although the PTFs used in

this research are calibrated to soil samples outside of the content can propagate to deeper depths, and these were not
considered in the current study.Glassboro study area, textural distributions indicate that the

samples on which Rosetta is based are predominantly coarse Water flux estimates from PTFs have considerable uncer-
tainty because K(�) and �(�) are nonlinear functions of mois-grained (Schaap et al., 2001), which is consistent with the sandy

sediments composing the Kirkwood-Cohansey aquifer system. ture content. We evaluated uncertainty in several ways. First,
for selected sites we compared PTF estimates of recharge withRecharge was calculated at each well location as described

by Baehr et al. (2003), using Darcy’s Law for unsaturated flow: those based on direct measurement of K(�) and �(�) by the
steady-state centrifuge method (Nimmo et al., 1987; Conca
and Wright, 1998). We also compared the median of the PTFqi � �Ki (�) �1 � ��i�1 � �i

zi�1 � zi
�� [1]

estimates with results from water-budget calculations in the
region. Second, Rosetta provides a bootstrap estimate of the

where qi is water flux at depth i (cm yr�1), Ki(�) is unsaturated standard deviation (uncertainty) of each parameter used in
hydraulic conductivity at depth i (cm yr�1), �i is matric poten- the water-flux calculations. Third, we used indicator kriging
tial (water pressure or head) at depth i (cm), and zi is depth to develop probabilistic models of recharge uncertainty at
(cm), which is positive upwards. Although the water fluxes unsampled locations. Finally, kriging provides a map of stan-
could not be calculated precisely at the water table, they were dard deviations that indicates the reliability of predictions.
calculated for layers deep in the unsaturated zone and repre- The Darcian method determines water flux in the sediment
sent recharge in this study. matrix and does not consider preferential pathways caused

The matric potential is defined as a function of the relative by, for example, desiccation cracks and root holes. Estimates
saturation (van Genuchten, 1980): of K(�) and �(�), however, are functions of measured moisture

content and can reflect focused recharge in topographically
� �

1
	

(S n/(1�n)
e � 1)1/n [2] low-lying areas. Spatial concentration of recharge can occur in

depressions and channels where high water content increases
K(�) and promotes rapid water flux (Nimmo et al., 2003).where 	 (1/cm) and n (dimensionless) are curve-fitting param-
Extremes of water flux within the sediment matrix are a typeeters. The parameter 1/	 is the air-entry pressure, and the
of preferential flow.relative saturation (Se) is defined as

Mapping and Spatial Analysis TechniquesSe �
� � �r

�s � �r

[3]
Kriging, an interpolation method that considers the spatial

where �r and �s are residual and saturated moisture contents, dependence of samples, was used to predict recharge at unsam-
respectively, and � is measured moisture content at a given pled locations. We emphasized kriging in this study because
sampling depth. (i) it is an exact interpolator and, therefore, provides a realistic

Equation [3] is used with the pore size distribution model map (kriging returns the observed value at locations with
of Mualem (1976) to yield the van Genuchten–Mualem model measured data) and (ii) kriging quantifies prediction uncer-
(van Genuchten, 1980) for K(�): tainty through the kriging standard deviation. In contrast,

other least-squares algorithms (such as multiple linear regres-K(�) � KOS L
e {1 � [1 � S n/(n�1)

e ]1�1/n}2 [4] sion, MLR) yield smoothed trend surfaces that often do not
fit environmental data very well because the trend surfaces arewhere K0 (the fitted matching point at saturation, cm yr�1)
pulled toward extreme values. However, MLR is potentiallyand L (dimensionless) are curve-fitting parameters. The pa-
useful in defining relations between recharge and landscaperameters �r, �s, 	, n, Ko, and L were obtained using the Rosetta
variables and can augment kriging predictions. Multiple linearmodel for each sediment layer for which texture data were
regression in a kriging context is discussed below after indica-collected (Baehr et al., 2003).
tor kriging.The hydraulic gradient (�i�1 � �i)/( zi�1 � zi) shown in Eq.

Indicator kriging (Isaaks and Srivastava, 1989; Goovaerts,[1] was calculated based on changes in measured moisture
1997; Deutsch and Journel, 1998) was used to reduce thecontent within a single sediment layer at depth (Baehr et al.,
influence of extreme values of recharge estimates on the vario-2003). Because sediment texture essentially is uniform within
gram and the kriged prediction. The recharge estimates area layer, changes in moisture content reflect the hydraulic gradi-

ent and not textural variability. Gravity flow (where K indi- highly skewed (skewness coefficient � 4.1) and yield erratic
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variograms that are difficult to interpret. Indicator kriging is Kriging with external drift (KED) was attempted as an
alternative to indicator kriging to incorporate informationa nonparametric geostatistical technique that involves trans-

formation of a variable to a binary response (0, 1) based on from densely sampled secondary attributes consisting of land-
scape variables. Kriging with external drift is appropriate whencut-off values such as quartiles or quintiles of the statistical

distribution of the variable. The binary, transformed recharge the local mean of a process (e.g., recharge) varies within the
kriging search neighborhood (Goovaerts, 1997). The KEDdata are referred to in this paper as “indicators.” The indicator

transform is consistent with a categorical description of re- prediction at each grid node is obtained by adding a regression
estimate to the kriged estimate of the regression residual.charge, used in this study to mitigate the uncertainty of the

PTF estimates (see Uncertainty of Recharge Estimates be- Multiple linear regression was performed to derive the drift
component of KED and also was used in a separate exerciselow). Ordinary kriging is performed on the indicators corre-

sponding to each cut-off using a unique variogram for each, to identify variables that significantly influence recharge in
the study area. Prior researchers observed that recharge wasand probabilities of exceeding a specified cut-off value are

generated for each class of indicators. Median approximation focused beneath topographic depressions at both upland and
lowland locations in an agricultural field (Delin et al., 2000);indicator kriging simplifies the calculations by using the same

variogram (e.g., corresponding to the median cut-off) for all and in the current study, recharge values �36.5 cm yr�1 in
the east and southeast generally occur in low-lying areas withclasses of indicators. The most representative variogram is

used, even if based on indicators from a cut-off other than low clay content (Fig. 2).
Landscape variables evaluated in KED include land eleva-the median (Isaaks and Srivastava, 1989). In the remainder

of this paper, ordinary kriging of recharge indicators by the tion, depth to groundwater, soil survey attributes, and a topo-
graphic wetness index given by ln(a/tan
), where a is the upslopemedian approximation method is referred to simply as “indica-

tor kriging” (IK). area per unit contour length and tan
 is the slope gradient
along which drainage occurs. The topographic wetness indexWe calculated experimental variograms of recharge indica-

tors from covariance functions using the following relation was computed from 1:250 000-scale digital elevation models
(DEMs) with a resolution of about 90 m (Wolock and McCabe,(Isaaks and Srivastava, 1989):
1995). The parameter a is based on the total area draining into

�*(h) � �2 � C(h) [5] each DEM grid cell, which was calculated using a single flow
direction algorithm described by Wolock and McCabe (1995).where �*(h) is the experimental variogram for separation dis-
We anticipated that topographic wetness index would be nega-tance (lag vector) h, �2 is sample variance, and C(h) is the
tively correlated with recharge. High values of the index repre-covariance function.
sent near-stream saturated (discharge) areas associated withThe covariance function is given by (Deutsch and Journel,
a rise in water-table elevation. The rise in the water table oc-1998):
curs when infiltrating water migrates laterally in low-lying
areas and can result in streamflow generation.C(h) �

1
N(h) �

N(h)

i�1

xi yi � m�hm�h [6]
Lastly, we attempted cokriging to exploit potential relations

between the primary variable (recharge) and densely sampled
where N(h) is the number of sample pairs separated by lag secondary variables, such as drainage characteristic from soil
vector h, xi is the recharge value at the beginning (“tail”) of the survey data. However, cokriging requires reasonable correla-
lag vector, yi is the recharge value at end (“head”) of the lag tion (typically 0.5 or greater) between the primary and second-
vector, m�h is the mean of the tail values � {1/[N(h)]}
N(h)

1 xi, ary variables. Cokriging was unsuitable with these data be-
and m�h is the mean of the head values � {1/[N(h)]}
N(h)

1 yi. cause Spearman correlations between recharge and soil survey
The covariance function is resistant to erratic values because, properties are 0.2 or less.
unlike the traditional variogram, it accounts for the sample
means of lag distance categories (Isaaks and Srivastava, 1989).

Water Quality RelationsWe used the spherical variogram model (Deutsch and Jour-
nel, 1998) to fit the experimental variograms of recharge indi- High recharge rate might adversely affect groundwater
cators: quality by transporting more chemicals to the water table.

Conversely, for a given chemical load, high recharge rate might
�(h) � c�1.5�ha� � 0.5�ha�

3

� reduce contaminant concentration through dilution. To test
these opposing hypotheses, median NO3 concentration and
atrazine percentage detection were compared for high andif h � a, and
low recharge categories representing agricultural, new urban,

�(h) � c if h � a [7] old urban, and undeveloped lands. Recharge values �29.1 cm
yr�1 (the median of PTF-derived recharge estimates) werewhere �(h) is the variogram (probability units)2, c is the sill

(probability units), h is separation distance (lag vector) be- categorized as “high” and values �29.1 cm yr�1 were catego-
tween pairs of samples (m), and a is the variogram range (m). rized as “low.” We attempted to account for differences in

Model parameters used in IK were obtained by fitting Eq. chemical loading by stratifying data by land-use category. Reli-
[7] to the experimental variograms of recharge indicators. The able data on chemical loading for specific locations within
range of the variogram (a) represents the limit of spatial the study area are unavailable. State-wide data (New Jersey
dependence, within which samples are spatially autocorre- Department of Environmental Protection, 1996) were com-
lated, and beyond which samples are independent. The sill piled in a GIS of the study area to assign wells to land-use
(c) represents the maximum value of the variogram and is categories. Water samples generally were collected from ob-
approximated by the sample variance. We performed vario- servation wells within two months after well installation
gram analysis using Variowin (Pannatier, 1996) and kriged the (Stackelberg et al., 1997). Nitrite plus nitrate concentration
recharge indicators in Surfer (Golden Software, Inc., 1999).1 (based on elemental N) is referred to in this paper as “nitrate”

because nitrite contribution to nitrite plus nitrate in ground-
waters of the area generally is �0.02 mg L�1. Atrazine concen-1 Use of brand names in this paper does not constitute endorsement

by the USGS. tration was determined by solid phase extraction with capillary
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Fig. 2. Soil coring locations, recharge estimates, and percentage clay in the Glassboro, NJ study area. Percentage clay is from the USDA Soil
Survey Geographic database.
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Table 1. Summary statistics of recharge estimates for the Glass- steady-state centrifuge method for selected samples
boro, NJ study area.† (Baehr et al., 2003). Although the PTF estimates do not

Parameter Statistic precisely match the latter, they are well within an order
of magnitude (Table 2). Additionally, both methodscm yr�1‡
predict low q for four sites and high q for two sites,Minimum �18.5

Quartiles indicating that conversion of the PTF estimates to cate-
25th percentile (lower) 3.0 gorical variables (“low” and “high” in Table 2) is appro-50th percentile (median) 29.1
75th percentile (upper) 127 priate. Because the value of the categorical variable is

Quintiles unaffected by the method of recharge estimation, it
20th percentile 0.5

helps compensate for the uncertainty of the PTF es-40th percentile 16.8
60th percentile 36.5 timates.
80th percentile 177 The standard deviation of bootstrap estimates in Ros-Maximum 1840

etta provides an additional measure of the uncertaintyInterquartile range 124
Skewness coefficient (dimensionless) 4.1 inherent in the recharge calculations. Mean values of

Rosetta output parameters � 1 standard deviation are† Number of observations � 48.
‡ Except as noted. shown in Table 3 for the same sites that had measured

values of K(�) and �(�) by the centrifuge method. The
column gas chromatography–mass spectrometry (Zaugg et al., range of Ko standard deviations [0.239–0.360 log(cm
1995). Medians, which are resistant to the effects of outliers d�1)] is somewhat higher than the range of 0.079 to 0.11
typical of skewed data sets (Helsel and Hirsch, 1992), were log(cm d�1) reported for saturated hydraulic conductiv-used as the measure of central tendency of NO3 data grouped

ity (Ks) in predominantly sandy soils (Schaap et al.,by land-use (agricultural, new urban, old urban, and undevel-
2001). We emphasized Ko in this study because it yieldsoped) and recharge categories. Censored values were set to
better predictions of unsaturated hydraulic conductivityone-half the detection limit before calculating medians of cate-
when suctions are at least a few centimeters (Schaap etgories. Atrazine concentration in groundwater commonly is

below the detection limit of 0.001 �g L�1 and therefore less al., 2001). To enhance comparison with prior work, we
amenable to comparisons involving median concentrations; also calculated bootstrap standard deviations for Ks
accordingly, percentage detection of atrazine was computed [0.072–0.146 log(cm d�1)], which compare favorably with
within categories for initial water quality comparisons. the above values.

Recharge values in excess of the 60th percentile (36.5
cm yr�1) in the east and southeast generally coincideRESULTS AND DISCUSSION
with areas having low percentage clay in the upper 1.8 mUncertainty of Recharge Estimates of soil (Fig. 2). Percentage clay in Fig. 2 is based on Soil
Survey Geographic (SSURGO) data (USDA-NRCS,Recharge estimates in the study area range from

�18.5 to 1840 cm yr�1, and median recharge is 29.1 1995). Areas with �12.5% clay predominantly occur
near major drainages in the eastern and south-centralcm yr�1 (Table 1). The sign convention in Eq. [1] was

reversed so that positive values indicate downward portions of the study area. High-recharge sites in these
areas generally are located in coarse-textured soils nearmovement of water to the aquifer, and negative values

indicate upward movement of water in response to streams. Streamflow in the study area is derived in part
from young, recently recharged groundwater (�25 yr)evapotranspiration. The wide range of values reflects

the considerable spatial variability of sediment proper- entering near the edges of the stream (Kauffman et al.,
2001). Several values of recharge exceed the annualties on which the estimates are based, and also the uncer-

tainty of the flow calculations. However, the median precipitation rate of 109 cm yr�1. Very high values of
recharge (�177 cm yr�1) that cluster in the southeastvalue compares favorably with regional estimates of 33.1

to 49.3 cm yr�1 obtained by water-budget calculations might indicate focused recharge in local, topographically
low-lying areas with coarse-textured sediments. Because(Baehr et al., 2003).

The uncertainty of recharge (q) was evaluated by of the extreme variability in estimated recharge, cate-
gorical descriptions of recharge (“low” and “high” ascomparing the PTF estimates with calculations based

on measured values of K(�) and �(�) obtained by the described above) are emphasized in this study and the

Table 2. Comparison of recharge estimates based on the Rosetta model and on measured values of hydraulic conductivity and matric
potential from the steady-state centrifuge method (from Baehr et al., 2003).

Recharge estimate

From Rosetta From measured Recharge
Site Depth Lithology param. K(�) and � category†

m cm yr�1

AG14 5.5 Coarse sand 0 0.2 Low
AG12 6.1 Fine–medium sand 1.7 8.3 Low
AG15 4.9 Med. coarse sand 5.6 1.8 Low
NU01 6.7 Sandy loam 5.6 0.0 Low
AG02 6.1 Coarse sand 106.1 50.0 High
NU08 5.5 Fine–med. sand 240.9 39.2 High

† High recharge is �29.1 cm yr�1 and low recharge is �29.1 cm yr�1.
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Table 3. Uncertainty of Rosetta output parameters used to calculate matric potential and partially saturated hydraulic conductivity, for
selected sites.

Mean � SD

Site �r �s � log(n ) Ko L

cm3 cm�3 log(1/cm) log(cm d�1)
AG14 0.05 � .0052 0.39 � .0060 �1.49 � .052 0.59 � .024 1.44 � .243 �0.89 � .53
AG12 0.05 � .0048 0.41 � .0069 �1.42 � .053 0.44 � .020 1.51 � .239 �0.83 � .48
AG15 0.04 � .0046 0.35 � .0053 �1.40 � .052 0.39 � .019 1.51 � .261 �0.86 � .59
NU01 0.03 � .0103 0.32 � .0096 �1.26 � .149 0.15 � .017 1.52 � .360 �1.46 � 1.31
AG02 0.05 � .0062 0.32 � .0078 �1.45 � .083 0.50 � .036 1.45 � .356 �0.85 � .64
NU08 0.04 � .0047 0.38 � .0064 �1.41 � .053 0.42 � .022 1.51 � .240 �0.85 � .50

transformed estimates are scaled by indicator kriging, causes the variogram range to differ depending on direc-
tion, precluding use of isotropic models. Variograma nonparametric method of spatial interpolation.
models obtained with Eq. [7] indicate maximum and
minimum ranges in the 40� and 130� directions, respec-Application of Geostatistical Techniques
tively. The fit of the models is reasonable because they

Indicator kriging was performed at the median cut- pass through the experimental values near the origin,
off by transforming the recharge estimates to 0 if less which helps define the nugget, and the IGF statistic
than or equal to the median (29.1 cm yr�1) and 1 if
greater than the median. Additional indicator data sets
were created and analyzed based on the quintiles of the
distribution of recharge values to evaluate variograms
for several cut-offs. A spherical variogram model corre-
sponding to 60th percentile cut-off indicators was used
to krig all of the indicator data sets (median cut-off and
20th, 40th, 60th, and 80th percentile cut-offs) because
it fit the experimental data well and best represented
anisotropic patterns in the data. The models were manu-
ally fitted to the experimental variograms, and fit was
assessed with the Indicative Goodness of Fit (IGF) sta-
tistic (Pannatier, 1996); values approaching zero indi-
cate good fit. The IGF statistic measures how well the
variogram model fits the experimental data based on
the number of lag classes, number of sample pairs, mean
and maximum separation distances, and the differences
between observed and fitted variogram values. Figure
3a indicates that omnidirectional variograms corre-
sponding to the 20th and 80th percentile cut-offs are
somewhat lower than for the 40th to 60th percentile cut-
offs. Experimental variograms of all cut-offs, however,
indicate similar range (approximately 5000–7000 m).

The variogram represents variation between samples
as a function of separation distance and indicates the
degree of spatial dependence (autocorrelation) between
samples. The omnidirectional experimental variograms
of 60th percentile recharge indicators increase to about
6000 m and then level off, indicating spatial dependence
up to this distance (Fig. 3a). Beyond about 6000 m, the
recharge indicators are spatially uncorrelated. There is
only one data point near the origin, which creates uncer-
tainty about the variogram at small separation distances.
This point is based on 66 sample pairs, however, which
is reasonable for variogram analysis. Use of smaller
classes of h to yield more points on the experimental
variogram was not feasible with the overall number of
samples (48). More samples closer than 6000 m would
improve definition of variogram behavior near the
origin.

Fig. 3. (a) Omnidirectional, experimental variograms of binary re-Variograms of 60th percentile recharge indicators charge indicators for all cut-offs and (b) anisotropic, spherical vario-
were analyzed in all directions (0�, 20�, and so on up to gram models corresponding to the 60th percentile cut-off (36.5

cm yr�1).160�) to identify potential anisotropy. Zonal anisotropy



684 VADOSE ZONE J., VOL. 2, NOVEMBER 2003

(0.052) is reasonably close to zero. The 40� direction is and direct correlation between measured and mapped
clay percentages indicate that sediment texture controlsabout parallel with the current shoreline (Fig. 1). Both

variogram models have nugget � 0.13 and sill � 0.24, recharge in the study area.
In this study, variograms were developed for noninun-but the range of the 40� variogram is 7600 m, and the

range of the 130� variogram is 4560 m (Fig. 3b). The dated land areas, and the variogram range represents
large-scale changes in sediment texture. Therefore, IK40� direction is referred to as the axis of major aniso-

tropy, and the 130� direction is designated the axis of maps shown here do not apply to discharge areas (i.e.,
where the water table is at or above the land surface).minor anisotropy. The nugget (y-intercept) represents

sampling error and small-scale variability within the Assembling the IK-predicted probabilities for all cut-
offs at a single location yields a least-squares estimatesmallest sampling interval, and the sill represents the

maximum variation between samples. of the conditional cumulative distribution function
(CCDF) of recharge. The CCDF is a probabilistic modelThe 40� variogram range (7600 m) appears related to

cyclical patterns of sediment texture in the study area, of uncertainty (Deutsch and Journel, 1998) that indi-
cates exceedance probabilities of recharge at unsampledrather than patterns of recharge and discharge, because

distances separating water bodies are substantially less. locations. For example, the predicted probability of ex-
ceeding the 20th percentile cutoff (0.5 cm yr�1) is 0.51Soils with �12.5% clay indicate broad, low-lying areas

in the east and south (Fig. 2). The width of these areas at a specific IK grid node on the recharge map, the
probability of exceeding the 40th percentile cutoff (16.8is about 8000 m in the northeast–southwest direction.

Similarly, the northeast–southwest distance separating cm yr�1) is 0.39, and so on. Indicator kriging is nonpara-
metric in the sense that the CCDF is estimated directlyareas in the west with clay content in excess of 16.4%

is about 8000 m. Recharge estimates in this study are from the data and not from the mean and variance of
a statistical distribution of recharge values at a particu-based in part on measured sediment texture, which is

correlated with the SSURGO data mapped in Fig. 2. lar location.
The Spearman correlation between surficial, measured Kriging estimates of indicators corresponding to re-
clay content and SSURGO percentage clay at sediment charge quintiles (20th, 40th, 60th, and 80th percentiles)
coring locations is 0.453 (p � 0.001). were assembled into CCDFs at selected IK grid nodes

The axis of major anisotropy (40�) is consistent with representing high and low recharge areas (Fig. 5). The
the depositional history of the Kirkwood-Cohansey aq- recharge quintiles represent cutoffs ranging from 0.5 to
uifer system, which generally is aligned in the northeast– 177 cm yr�1. The resulting CCDFs represent the statisti-
southwest direction in the study area (Fig. 1). The Co- cal distributions of recharge probabilities at unsampled
hansey Sand composes most of the unsaturated zone in locations and are shaped differently depending on
the study area and was deposited in inner shelf, near- whether they are in high or low areas of recharge as
shore, and beach areas during slow retreat of the sea predicted by IK. The CCDF for the high recharge areas
during the Miocene Age (Zapecza, 1989). The deposi- generally indicates higher exceedance probabilities at a
tional history causes sediment properties to be more given recharge rate. For example, the probability of
alike in the northeast–southwest direction than in the exceeding the 60th percentile value (36.5 cm yr�1) is
perpendicular direction because it parallels the ancestral 0.63 in the high recharge area and is 0.22 in the low
shoreline. This similarity is manifested as increased spa- recharge area.
tial continuity of estimated recharge in the 40� or north-
easterly direction. Potential Causes of Recharge Variability

Figure 4 indicates the probability of exceeding median
We evaluated KED as an alternative to IK to incorpo-recharge (29.1 cm yr�1) in the study area. Indicator

rate information from densely sampled secondary attri-kriging was performed on median recharge indicators
butes. SSURGO attributes screened in regression (theusing the anisotropic variogram model corresponding
drift component of KED) include individual soil drain-to the 60th percentile recharge indicators. An elliptical
age categories, such as “moderately well drained” andsearch neighborhood with a maximum distance of about
“poorly drained,” and lumped SSURGO categories rep-19 000 m was used to incorporate the zonal anisotropy.
resenting soil drainage characteristic and soil hydrologicProbabilities are low in the southwestern and northeast-
group (Table 4). The latter variable describes the infil-ern portions of the study area and are high in the eastern
tration characteristics of soils. Measured sediment tex-and southeastern portions.

The IK map identifies an area where recharge is ex- ture was evaluated in a separate MLR exercise but not in
KED, which requires secondary information throughoutpected to be less than the regional median (Baehr et

al., 2003). The low probabilities in the southwest coin- the study area (i.e., at kriging grid nodes).
Percentage of moderately drained soils is highly sig-cide with the Cohansey River Basin, where average

annual recharge is estimated to be 37.1 cm yr�1 (Charles nificant (F-ratio p � 0.003) in the KED model, and
the poorly drained soils variable approaches statisticalet al., 2001). This value is the 25th percentile of the

range of estimates (33.1–49.3 cm yr�1) from water-bud- significance at the 0.05 level (Table 4). However, KED
predicts local extreme values of recharge that are mostlyget calculations for the region. High probabilities in the

east and southeast generally coincide with areas with unrelated to nearby observed values. The extreme val-
ues are from regression model prediction or the drift�12.5% clay (Fig. 2). The spatial patterns of recharge

estimates, IK probabilities, and SSURGO clay content, component of KED, which is added to the kriged resid-
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Fig. 4. Predicted probability of exceeding median recharge (29.1 cm yr�1) in the Glassboro, NJ study area. Conditional cumulative distribution
functions (CCDFs) in Fig. 5 were developed for the two locations shown.

ual. In contrast, IK reduces the influence of observed, low IK probabilities in Fig. 4 generally coincide with
extreme values of recharge by transforming data to indi- areas with high percentage clay in Fig. 2. For these
cators (0, 1). The resulting IK map of probabilities repre- reasons, IK is emphasized in this paper.
sents a smoothly varying surface devoid of local ex- Multiple linear regression was used in a separate exer-
tremes. Indicator kriging implicitly incorporates soils cise to identify variables that significantly influence re-
information because the recharge estimates are based charge in the study area. Surficial, percentage measured
on measured sediment properties. As a result, areas with clay was highly significant (F-ratio p � 0.045) in the

MLR model, and percentage well-drained soils was sig-
nificant at the 0.10 level (p � 0.088 in Table 4). Coefficient
signs indicate that recharge decreases with increasing clay
content and increases with increasing percentages of
well-drained soils. This is consistent with the spatial
patterns of PTF-estimated recharge and clay content
shown in Fig. 2, where fourth and fifth quintile values
of recharge cluster in the east and southeast.

After building the MLR model, we entered the re-
maining variables one at a time and checked F-ratio p
values for significance at the 0.05 level. Variables repre-
senting high and low infiltration soils yielded highly sig-
nificant p values (Table 4), but the coefficient signs are
difficult to interpret. For example, the sign of the high
infiltration coefficient is negative, which suggests that
recharge decreases with higher percentages of well-
drained soils. We expected the reverse relation because
these soils by definition have moderate to high rates of
water transmission even when thoroughly wetted (USDA-

Fig. 5. Conditional cumulative distribution functions (CCDFs) corre- NRCS, 1995). The high-infiltration areas might containsponding to low and high recharge locations in the Glassboro, NJ
some fine-grained sediments at depth. Whereas SSURGOstudy area. The recharge locations corresponding to the CCDFs

are shown in Fig. 4. variables describe the upper 1.8 m of soil, recharge was
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Table 4. Explanatory variables evaluated in kriging with external drift and multiple linear regression.

Variable Coefficient sign F-ratio p value

Kriging with external drift model
SSURGO moderately well drained soils, % � 0.003
SSURGO poorly drained soils, % � 0.053

Multiple linear regression (MLR) model
Measured clay, % � 0.045
Well drained soils (lumped variable comprising SSURGO excessively drained, somewhat excessively � 0.088

drained, well drained, and moderately well drained categories), %
Additional variables screened in MLR model

Topographic index � 0.507
Land elevation, m above sea level � 0.416
Depth to water below land surface, m � 0.699
Poorly drained soils (lumped variable comprising SSURGO poorly drained, somewhat poorly drained, � 0.359

and very poorly drained categories), %
High infiltration (lumped variable comprising SSURGO hydrologic groups A and B), % � �0.001
Low infiltration (lumped variable comprising SSURGO hydrologic groups C and D), % � 0.001
Measured sand, % � 0.980
Measured silt, % � 0.965

estimated at depths closer to the water table (median Relation of Recharge to Shallow
Groundwater Qualitydepth of recharge calculation � 2.4 m). Alternatively,

the high-infiltration areas might contain localized de- Both median NO3 concentration and atrazine per-
posits of fine-grained sediments in closed depressions centage detection were lower for the high recharge cate-
or as overbank flood deposits along streams that are gory corresponding to developed lands, suggesting that
too small to be mapped at the SSURGO scale. Such higher recharge dilutes contaminant source concentra-
deposits would restrict recharge to the aquifer. tions for a given land use (Table 5). For example, median

Topographic wetness index, land elevation, and depth NO3 concentration is 6.6 mg L�1 for the low recharge
to water are insignificant in regression; they have p category corresponding to old urban land and 2.7 mg L�1

values �0.4 when introduced into the MLR model (Ta- for the high recharge category. Corresponding atrazine
ble 4). The study area is in the Coastal Plain and is percentage detections are 75.0 and 37.5%, respectively.
relatively flat. Topographic relief in the area likely is In undeveloped areas both high and low recharge cate-
insufficient to significantly affect recharge at the re- gories have the same median NO3 concentration (0.07
gional scale. Lack of topographic relief is reflected in mg L�1) and atrazine percentage detection (20%). A
the low coefficients of variation (expressed as percent) scatterplot of the middle 50% of recharge estimates
of land elevation (21%) and topographic wetness index indicates generally decreasing NO3 concentration with
(25%). Sediment properties and recharge vary consider- increasing recharge rate in developed areas (Fig. 6). The
ably more in the study area. The CV of measured mois- fitted lines in Fig. 6 are from linear regression.
ture content is 56%. The CVs of SSURGO soil drainage
variables are as high as 140%, and the CV of the re-
charge estimates is 220%. The wide ranges of these
variables facilitate correlation in that high values of
recharge generally coincide with high percentages of
well-drained soils. The high CV of recharge is typical
of soil hydraulic properties and reflects both the spatial
variability of sediment properties and the uncertainty
of PTF parameters. In prior research, CVs of hydraulic
properties in field soils were as high as 124% for satu-
rated hydraulic conductivity and 194% for ponded sol-
ute velocity (Corwin et al., 1997).

Table 5. Median NO3 concentration and atrazine percentage de-
tection for land uses and recharge categories in the Glassboro,
NJ study area.

Recharge Sample Median NO3 Atrazine
Land use category† size conc. detection

mg L�1 %
Agricultural High 5 15.0 60.0

Low 6 19.0 83.3
New urban High 6 1.95 50.0

Low 8 4.50 62.5
Old urban High 8 2.65 37.5

Low 4 6.60 75.0
Undeveloped High 5 0.07 20.0 Fig. 6. Relation between NO3 concentration and estimated rechargeLow 5 0.07 20.0

in the Glassboro, NJ study area (middle 50% of recharge estimates
is shown).† High recharge is �29.1 cm yr�1 and low recharge is �29.1 cm yr�1.
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Fig. 7. Distributions of (a, b) NO3 and (c, d) atrazine concentrations in relation to land-use and recharge categories (excludes undeveloped
lands). ANOVA p values are based on ranked concentrations.

The dilution effect is consistent with results of prior in water table height and soil temperature and a de-
crease in the �18O content of deep lysimeter (1.2 m)researchers, who reported declines of about 30% or

more in NO3, electrical conductivity, and silica concen- pore water. These data indicate vertical migration to
the deeper subsurface of warmer water coinciding withtrations in middle and deep (0.8 and 1.2 m) unsaturated

zone lysimeters from flushing by low-residence time a winter thaw.
Comparatively low NO3 concentration in high re-water in the Palouse River Basin of southeastern Wash-

ington State (Allen-King et al., 2001). The lysimeters charge areas might also indicate denitrification caused
by frequent and longer periods of saturation. Unsatu-were installed in a no-till agricultural field, and the Basin

comprises loess deposits over basalt. Corroborating in- rated zone NO3 concentrations, such as might be ob-
tained with lysimeters, were unavailable in this study.formation includes a large precipitation event during

above-freezing temperatures coincident with increases However, we sampled NO3 and dissolved oxygen (DO)
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Fig. 8. Geographic information system overlay of land use and areas with high recharge probability (likely �29.1 cm yr�1) in the Glassboro, NJ
study area.

using shallow groundwater probes (0.6–0.9 m below wa- senting land use (p � 0.001) and recharge category (p �
ter level) paired with 15 observation wells in the study 0.024) (Fig. 7a and 7b), but differences in ranked atrazine
area to assess denitrification potential in recently re- concentration were not (p � 0.370 and 0.206, respec-
charged groundwater. Compared with the observation tively) (Fig. 7c and 7d). Median atrazine concentration,
wells, the shallow probes better characterize the quality however, was greater in the low recharge category (Fig.
of water entering the aquifer at the well location. Me- 7d), which is consistent with the dilution hypothesis.
dian NO3 concentration in groundwater samples from A GIS was used to compare agricultural, urban, and
the probes is 3.3 mg L�1, and median DO is 6.7 mg L�1. undeveloped lands with areas where recharge likely ex-
The elevated NO3 concentration and well-oxygenated ceeds the median rate of 29.1 cm yr�1. Areas where the
groundwater are inconsistent with denitrification, which IK-predicted probability of exceeding median recharge
is promoted by anaerobic conditions. Nitrate and DO is �0.5 were designated “high probability,” and areas
concentrations are very similar for probes and paired with IK-predicted probability �0.5 were designated
observation wells, indicating a lack of vertical stratifica- “low probability.” High probability areas generally oc-
tion of water quality in the upper part of the aquifer. cur in the northwestern, northern, and southeastern por-
Median concentrations of these constituents in samples tions of the study area (Fig. 8). Land use in the north
from the 15 paired wells are 3.6 and 6.7 mg L�1, respec- and southeast is mainly urban and undeveloped. The
tively. Compared with concentrations of NO3 and DO low probability areas primarily coincide with agricul-
from the probes, these differences are statistically insig- tural and undeveloped lands in the southwest. The cross-
nificant (p � 0.983 and 0.818, respectively). hatched areas in Fig. 8 show where, within a given land

Two-factor ANOVA on ranked NO3 and atrazine use, contamination potential is lower because of possi-
concentrations from observation wells was performed ble dilution.
to test the effects of recharge category and type of devel-
oped land (agricultural, new urban, old urban) on water Verification of Recharge Mapquality. Atrazine concentration (instead of percentage

We attempted to validate the recharge map for a sub-atrazine detection by group) was used in the ANOVA
set of 31 well locations not used in IK (those lackingto facilitate computation of means of treatment groups.
measured sediment texture data and a correspondingConsidering only developed areas, differences in ranked

NO3 concentration were significant for variables repre- recharge estimate) by comparing NO3 concentration in
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Fig. 9. Distribution of urban wells with and without (validation) recharge estimates in relation to indicator kriging standard deviations associated
with kriged map of median recharge indicators.

areas with low (�0.5) and high (�0.5) predicted proba- result in Fig. 7b) could not be validated in unsampled
areas without accounting for differences in land use.bilities of exceeding median recharge. We refer to these

31 wells as validation sites because they are unsampled Although we attempted to compensate for differences
in loading by considering only urban wells, N load likelywith respect to recharge. A total of 78 wells were sam-

pled for NO3 and other compounds during previous differs from town to town and even from house to house.
Variation in N load likely obscures the effect of rechargewater-quality surveys in the study area (Stackelberg et

al., 1997, 2000). Sediment samples (used in recharge on water quality at validation sites. The high p value
might also be related to the small number of NO3 obser-estimates) were collected at 47 of these wells and at one

additional site not associated with an observation well. vations (11–13) in the recharge subcategories.
We repeated the Wilcoxon Rank Sum test using allTwenty-four of the remaining 31 wells are in new and

old urban areas. We performed a Wilcoxon Rank Sum 50 wells in urban areas (new and old combined) with
water-quality data, including those with a recharge esti-test to compare NO3 data from areas with low and high

recharge probabilities, using the 24 validation wells in mate. This attempted a general verification of probabili-
ties predicted by IK, but is not validation per se. Medianurban areas. Lumping the new and old urban wells into

a single category is reasonable because NO3 concentra- NO3 concentration is 3.5 mg L�1 in the low probability
category and 2.5 mg L�1 in the high probability categorytion is similar for the two groups (Fig. 7a). Stratification

of the 31 validation wells by both land use and recharge in urban areas, suggesting dilution by recharge. These
differences, however, are statistically insignificant (p �category was impractical because of the small number

of observations (typically 2 to 3) in each subcategory. 0.915). Although median NO3 concentration is different
for the two recharge probability categories, other per-Considering the 24 validation wells in urban areas, me-

dian NO3 concentration is 1.4 mg L�1 in the low proba- centiles of the distributions are similar.
In addition to variations in N load, IK predictionbility category and 2.0 mg L�1 in the high probability

category. These differences are statistically insignificant uncertainty might obscure differences between recharge
probability categories. Equation [7] indicates that the(p � 0.401), indicating that the strong relation between

recharge estimates and NO3 concentration (ANOVA greater the separation distance h between samples, the
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