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ABBREVIATICONS AND CONVERSION FACTORS
For the use of readers who prefer to use inch-pound units, conversion

factors for metric terms used in this report are listed below:

Muoltiply metric unit by To _obtain inch-pound unit
Length

millimeter (mm) 0.03937 inch (in.)

meter (m) 3.281 foot (ft)
Volume

liter (L) 0.2642 gallon (gal)
Speed

meter per second (m/s) 3.281 foot per second (ft/s)
Mass

gram (g) 0.002205 pound (1b)

kilogram (kg) 2.205 pound (1b)
Force

Newton (N) 0.2248 pound (1b)

Temperature
Temperature in degrees Fahrenheit (® F) can be converted to degrees Celsius
(O C) as follows:

°F =1.8°¢C + 32

Density
gram per cubic 0.03613 pound per cubic
centimeter (g/cmg) inch (1b/in3)
Pressure
kilopascal (kPa) 0.1450 pound per square

inch (1b/in?)

iii



PROGRESS REPORT
ON
TEMPERATURE EFFECTS IN VIBRATIONAL-TYPE
SEDIMENT-CONCENTRATION GAGES
By

John V. Skinner

ARSTRACT

An experimental gage for measuring sediment concentrations in flowing
water was designed and then tested under laboratory conditioms. The gage
consists of a steel tube girdled at both ends by ring—shaped weldments that
join with a waterproof housing., The outside of the tube is shielded by the
housing but the inside of the tube can be filled with slurries of flowing,
sediment—laden water. Electromagnets inside the housing cause the tube,
water, and sediment to oscillate 1like a vibrating violin strimg.

The measurement principle is based on the relation between vibrational
frequency and comcentration of sediment in the slurry., As concentration
increases, the slurry becomes denser and the tube vibrates at a lower
frequency. A measurement is made by reading the frequency and then using a
calibration chart to convert frequency to concentration.

Tests show the experimental gage has two undesirable characteristics:
frequency is strongly influenced by water temperature, and frequency slowly
shifts over time. Correcting these problems will require redesign based on
quantitative assessments of factors controlling the gage's response. To aid

design work, the paper presents equations that relate frequency to (a) water



density, (b) sediment density, (c) sediment concentration, and (d) proper—
ties of the tube itself. These properties include thermal-expansion coef-
ficient, elasticity, tube diameter, tube length, and tension forces in the
metal walls., Theoretical results indicate the tensive forces are offending
factors that produce temperature instabilities and drift problems. The
forces probably evolved during the process of arc welding the tube and

housing together,

INTRODUCTION

Fluvial sediment can adversely affect waterways, lakes, and esiuvaries.
Soil particles dislodged by rain, flowing water, and landslides may damage
fish—spawning areas, fill navigation channels, and reduce storage space in
reservoirs. On the other hand, sediment is beneficial in certain instances.
Ocean beaches are created and replenished by sediment from nearby estuaries.
If sediment supplies are disrupted, wave action erodes the beaches and
-exposes underlying strata of soil or rock,

Sediment studies reguire field data which are difficult and expensive
to collect. Technicians must travel to sampling sites, collect water
specimens, then ship the specimens to laboratories where sediment
concentrations can be determined. Several months may pass before the
laboratory data are available for engineering analysis,

One way of simplifying and speeding the data—collection processes is to
install electronic sediment—concentration gages at monitoring sites and link
the gages to a central office by means of radio or telephone. An

experimental gage of this type was tested at a field site near Madison,



Wisconsin (Skinner et al., 1986)., The instrument consisted of a tube that
oscillated at frequencies determined by the concentration of sediment in the
river water, Preliminary tests showed the gage met requirements for speed
and accuracy; however, the shape of the vibrating tube created certain
problems, Because the tube was bent into a v shape with both ends facing
the same direction, the gage was unsuitable for underwater applications.
Vater would not flow through the tube if it was submerged. To overcome this
problem, the gage was mounted above water and connected to a submerged
sampling pump. At Madison, pumping solved the problem of supplying water to
the vibrating U-tube gage; however at many other sites, pumping is
impossible because electricity is not available,

Pumps create another problem related to the fixed intakes. Concen-
trations of suspended sediment vary from point to point in a river's cross
section. For example, concentrations near the bed of a river generally
exceed concentrations near the water surface, Data on concentration
gradients are important; however, this information is not registered by a
U-tube which must sample from a fixed point, The sampling pump, along with
its intake, electric cord, and tubing are too cumbersome to move around in
the cross section.

Another sampling problem stems from opposing requirements for pumping
rates. To minimize frequency—measurement errors, pumping rates must be
stable; however, to minimize sediment sampling errors, pumping rates must be
constantly adjusted to match flow-velocities at the intake.

Striving to overcome disadvantages of the U-shaped tube, personnel at

the Sedimentation Project built an experimental sediment gage that contains



a straight vibrating tube. This new instrument can be submerged and moved

in a cross section to map concentration gradients., Because the tube is open
at both ends, flow rates approaching the tube are only slightly greater than
flow rates inside the tube. However, laboratory tests revealed two problems.
Frequencies slowly shift with the passage of time and frequencies are

strongly influenced by water temperature.

Purpose and Scope
The purpose of this study is to derive equations for designing an
improved version of the straight—tube sediment gage. The scope of this
study is limited to analyzing natural frequencies of a tube with its ends

rigidly clamped to immovable supports.

Terminology

External forces play an important role in setting a tube's vibrational
frequencies, Consider a slender tube mounted horizontally with its ends
clampeh to stationary supports. Any external force that alternately pushes
down and pulls up on the tube causes it to vibrate. Furthermore, the
frequency of vibration matches the frequency of the external force. This
type of motion is termed forced vibration.

If external forces are absent, a tube can still be made to vibrate.
To initiate vibration, the tube must be pushed away from its rest position
and then released suddenly, Striking the tube a sharp blow provides the
required stimulus and starts a form of motion termed free vibration. Motion

occurs only at certain matural frequencies set by the tube’'s shape, size,



mass, length, and rigidity. A perfectly-elastic tube vibrating in a vacuum
can bend and relax without losing energy so the motion continues forever.

The term damping refers to the process of removing energy from a
vibrating tube. In most tubes, kinetic energy is transformed to heat through
the action of friction forces. Some friction occurs within the tube's
walls: the remainder occurs outside the tube as air shifts back and forth
around the moving tube surface.

A vibrating tube alternately bends and straightens as it shifts through
each vibrational cycle. A cycle begins with the tube arched into one of its
modal shapes. From this starting point, the tube makes a series of moves,
After straightening, the tube bends into a mirror image of its modal shape.
The tube then straightens again and finally completes the cycle by returning
to its original shape.

A tube can vibrate in many modes. Figure la shows the first mode as
three sets of lines representing snapshots of the tube as it shifts through
a cycle. As the tube oscillates, all points along its axis move down
together and then move up together. In common parlance, we say the points
move in phase with one another.

The second modal shape is shown in figure 1b, The tube vibrates in two
segments: one segment is left of the midpoint and the other segment is to
the right. The opposing arrows show the phase relation between two
segments, During the first half cycle, the left segment shifts down while
the right segment shifts up. During the last half cyclie, the left segment
shifts up while the right segment shifts down. In common parlance, we say

the segments move in phase opposition with one another.
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Figure 1l.--Modal shapes for a tube clamvoed at both ends. (a) First
modal shape. (b) Second modal shane. (¢) Third modal shane,



The third modal shape is shown in figure lc. The tube vibrates in
three segments. Adjacent segments move in phase opposition with one
another.

In theory a tube has an infinite number of modal shapes; however, in

discussions that follow, we will focus on the first, second, and third modes.

THEORY OF VIBRATING TUBES
In this section, we formulate equations describing the movement of
vibrating, liquid-filled tubes. The first two topics——equations of motion
and auxiliary-equation roots——cover general cases: mno restrictions are
imposed on the tube’s end supports. The next three topics——boundary
conditionss tension-equation roots, and special solutions of the tension
equation——are more restrictive: only tubes having rigid end supports are

considered.

Equations of Motion
Figure 2a shows a tube mounted between two fixed supports that encircle
the tube like snug~fitting collars., These supports (a) prevent the tube's
ends from moving vertically but (b) allow the ends to slide horizontally.
The S forces, which pull on the ends of the tube, act on the entire length
of tube including the section between the fixed supports. For simplicity,
the tube is shown in its first modes however, the discussion in this section

applies to all medes.
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(c) NET UPWARD SHEAR FORCE = - — dx
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Figure 2.--Forces influencing vibrational frequencies, (a) Axial

forces on tube ends.

(b) Axial forces on a tube element.

(¢c) Bending and shear forces on a tube element.



Equations for the tube's motion will be based on the following
assumptions:
(a) Any chosen point on the tube (figure 2a) moves up and down with pure
harmonic motion. In other words, the motion is of the form y = sin (pt)
where p is angular frequency, t is elapsed time, and y is the point’'s
displacement measured from a stationary reference line passing through the
support centers.
(b) Every cross section normal to the tube's axis is acted upon by the
force S.
(¢) The maximum vertical displacement of any point on the tube's axis is
much smaller than the length L.
(d) All cross sections are identical: the tube is uniform from end to end.
(e) The tube is free of all damping forces.
(f) Rotational movement of tube sections can be neglected.

We now apply Newton's second law of motion to a tube section between x
and x+dx. Our objective is to equate the met upward force acting on this
section to the mass of the section multiplied by its upward acceleration.

We divide the equation-writing process into two phases, In the first
phase, we focus on the axial force S. Figure 2b (a) shows all vertical
forces acting on the section ends and (b) gives the net upward force which
is the sum of all upward forces minus the sum of all downward forces. In
the second phase, we focus on shear forces, A acting on the section ends.
Figure 2c¢ shows the shear-force vectors are normal to the tube’s axis and
therefore slightly inclined to the y axis., DBecause the inclination angles

6 and © are small (see assumption c”), the functions cos(® and cos(®')



are nearly equal to 1, Therefore, the vertical components of the shear
forces are obtained by simply rotating the original shear vectors into the y
axis. Subtracting the right-hand shear force, which acts downward, from the
left-hand force, which acts upward, we obtain the net upward-shear force
expression on figure 2c.

The tube section has a mass of r(dx) and an upward acceleration of
azy/at2 (refer to Appendix A for definition of symbols)., Mass,
acceleration, and net upward force (see figure 2b and 2¢) are related as
follows:

r(dx) (3%y/9t?) = $(dx) (3%y/0x?) - (dx)(3V/ox) (1)

Equation 1 can be written in a more convenient form by applying an
assumption and then relating bending moments to shear forces. Each of the
two S-forces (figure 2b) produces a moment: one moment acts clockwise and
the other acts counterclockwise., In general, these two moments do not
cancel because the moment arms are not equal. An exact analysis must include
the net moment; however, this discussion neglects the net moment as stated
in assumption'T:°

The two shear forces (straight arrows on figure 2¢) share a common
moment arm of dx/2 measured from the element’s center point. Furthermore,
each force produces a clockwise moment, The two bending moments (curved
arrows on figure 2¢) differ in magnitude but oppose one another in
direction. With these facts in mind, we equate clockwise moments to
counterclockwise moments. As an approximation, we drop terms involving
high—-order differentials to obtain V = 3dM/dx. This equation is

differentiated with respect to x to obtain aV/dx = azM/axz*—we now have the

10



first of two equations required to simplify equation 1. The other equation,
32M/0x2 =EI(84y/6x4), is obtained by taking the second derivative of the
bending—~moment equation, M = E162y/6x2, derived by Laurson and Cox (1947).
The equations aV/dx = 3°M/3x2 and 92M/0x2 = EId%y/8x% contain the
common term 62M/6x2. Eliminating this term by combining the two preceding
equations yields 8V/dx = E184y/6x4. The expression for 8V/3x is now
substituted into equation 1 and then the factor dx is canceled. We obtain:
£(3%y/3t2) - $(82y/9x2) + El(a%y/axh = o. (2)
The next part of the analysis involves the modal—shape function "R,
which defines the shape of the tube’s axis when the tube reaches its maximum
deflection. X is a function of only one variable——namely x. An expression
for y, the deflection of any chosen point on the tube’s axis, must obviously
involve both x and t (time). According to assumption a, the vibratory
up—~and—down motion is harmonic and is represented by the expression
sin{pt}. Multiplying this expression by X gives the general deflection
equation, y = X sin(pt). Partial derivatives of y can now be written as
follows:
azy/at2 = —Xp2 sin pt; 62y/6x2 = (82X/9x2) sin pt: 64y/3x4 = (0%4%/8x*) sin pt.
By substituting these partial derivatives into equation 2, and then
cancelling the sin (pt) factors, we obtain
EI (3%%/8x%) -8 (92%/8x%) -Xrp? = 0 (3)
The partial derivatives in equation 3 can be replaced with total
derivatives because X is a function of x alone. After completing this
substitution, we obtain the linear differential equation:

EI (a%x/ds%) - s (a2%/ax?) - Xrp? = o. (4)

11



Auxiliary—-equation Roots

We now use the auxiliary-equation method described by Leighton (1952,
p. 47) to solve cquation 4. First substitute the D-operator, defined as
D = d/dx, into equation 4 and then factor the parameter X. We obtain

x(Erp* - sp? - rp?) - 0 (5)
The auxiliary equation is formed by setting the expression in parentheses
equal to zero. After dividing all terms by EI, we obtain

p4 - (S/ED)D? - rp2/EI = 0 (6)
Equation 6, being a fourth-order polynomial, has f{our roots. Assuming two
of the roots are real——¢all them a and a’~—and two are conjugate imaginary-—
call them +jb and —jb, we write equation 6 in factored form as follows:

(D-a)(D-a’}{D+jb)}{D-jb) = O (7
After multiplying these factors together and collecting common terms,
we obtain

D4-(a+a’)D3 + (b2+aa’)D? - (a+a")b2D + aa'b? = 0 (8)

The real roots of equation 6§ are related to one another. Notice that
terms involving D3 and D are not present in equation 6 and that these terms
vanish from equation 8 if a’ = —a. Apparently, the two real roots of
equation 6 are equal in magnitude but opposite in sign., The four roots of
equation 6 and their positions in the complex plane are shown in figure 3.

According to Leighton (1952), the general solution of equation 4 can now
be written in terms of the auxiliary-equation roots. The roots (sce
figure 3) become exponents and the general solution has the form

X = Cleax + C20~ax + C3e+jbx + C4e~jbx (9)

The coefficients Cl' C2, C3, and C4 are arbitrary constants.

12
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Figure 3.~-Location of auxiliary-equation roots.

Figure 4,--Coordinate svstem for a vibrating tube,
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Boundary Conditions

Equation 4 and its solution (equation 9) were derived without
specifying the type of supports at the tube’s ends; therefore, the equations
cover a broad variety of situations. Many forms and combinations of end
supports (boundary conditions) are possible, For example, one end of a tube
can be clamped and the other end can be free. Timoshenko et al. (1974,

p. 454) solved equation 4 for a tube with both ends resting on knife-edge
supports. The ends rocked clockwise and then counterclockwise as the centerx
point translated up and down. Timoshenko's solution does not apply to the
c¢lamped—end arrangement shown on figure 1; however, his technique for
obtaining solutions can be applied to the problem at hand.

First, we align the tube with the coordinate system on figure 4,
Deflections of points on the tube's axis are measured from the tube's rest
position denoted by the short—-dashed line., The tube’s left end lies at
x = 0 and the right end lies at x = L. The modal-shape function X defines
the relation between y and x through the range 0 < x £ L.

Two pairs of boundary—condition equations are required to obtain a
solution, The first pair stems from constraints on tramnslation. At x = 0,
the tube cannot translate up and down; therefore, the condition X = 0 must
be satisfied. After substituting 0 for both X and x in equation 9, we
obtain

Cqy +Cyp +C3 +Cq =0 (10)
At x = L, the tube cannot translate up and down; therefore, the condition

X = 0 must be satisfied. After substituting O for X and then substituting L

14



for x in equation 9, we obtain

Credl + Chemal + Cgedbl + ¢4emibL = 0 (11)

The second pair of boundary-condition equations stem from comstraints
on rotation: no rocking motion can occur at the ends. Notice that the
tube's axis (fig. 4) forms a smooth curve that starts as a horizontal line
inside the left clamp. The axis arches across the region between the clamps
and then terminates as a horizontal line inside the right clamp. Between
the clamps, the axis shifts with the passage of time; however, at x = 0 and
at x = L, the axis always coincides with the rest position. Stated
mathematically, at x = 0 and at x = L the slope of the modal-shape function,

dX/dx, must be zero.

Differentiating equation 9, we obtain

dX/dx = aCye?X ~ aCpe 2% + jbCedPX ~ jbC,e~IPX (12)
After substituting zero for x and dX/dx in equation 12, we obtain

aCy - aCy + jbCz - jbCy = 0 (13)
Returning to equation 12, we substitute L for x and then substitute O for
dX/dx to obtain

aCyel - aCye™8l + jbCyedbC ~ jbCye™IPL = 0 (14)

Equations 10, 11, 13, and 14 form a homogenous system with four
unknowns——Cl, Cp, C3, and C4. Rothenberg (1983, p. 116) shows the system

has non—zero solutions only if the determinant formed from the coefficients

15



of Cl’ Cy, C3, and C4 is zero. Setting up the determinant, we obtain:

{1 1 1 1 |
: eal e—alL eJjbL e~ JbL {
i a —a jb -jb E =0 (15)
; aedl ~ge"al jbedbL ~jbe~ibL]|

To solve equation 15, we expand the determinant into a polynomial,
Rothenberg (1983, p. 100) and most algebra texts describe the process so
only a few intermediate steps are given here. By multiplying rows in
equation 15 by constants and replacing rows with the sum of two other rows,
we manipulate the determinant into the following form which contains leading

zero's in all but the first row:

l1 1 1 1 |

}0 1-e—2aL 1-e—aL+jbL 1-e—al~jbL :

:0 ae~2alg jb-jbe al+ibL —jb+jbe al-jbL : =0 (16)
io 1+e¢~2aL 1—j(b/a)e'aL+ij 1+j(b/a)e"aL~ij=

A

t this point, let us introduce parameters f and g and define them as follows:
f = aL (17)
g = bL (18)
We now substitute f and g into the determinant of equation 16 and then
expand the determinant about its left column., Because this column contains

three zeros, the 4 x 4 determinant reduces to the following 3 x 3

determinant:
|1 —e~2f 1-¢~fHis 1-¢~f-ig |
}e“Zf-l +j(g/£)-j(g/£) e E¥iE —j(g/f)+j(g/f)e—f"ig= =0 (19)
}1+e_2f 1-j(g/f)e f+ig 1+j(g/f)e i E

16



The 2x3 determinant in equation 19 can be expanded into a polynomial by

applying the following identity:

1A B cl
| |
Ip E F| = AEI+BFG+CHD-CEG-BDI-AHF (20)
] |
e H 1l

The polynomial expansion of equation 19 contains terms with complex (mixture
of real and imaginary) exponents. Each of these complex terms can be
written as the sum of two other terms——one entirely real and the other
entirely imaginary. The following two identities are used repeatedly in
this process:

eftig = ¢feig (21)
and

ed8 = cos(g)+j sin(g) (22)

The next step consists of sorting terms in the polynomial expansion,
Two groups are formed: one contains only real terms and the other contains
only imaginary terms. The real-term group reduces to zero and the imaginary-term
group contains the common factor +j. After multiplying the imaginary—term
group by —j and recalling that (+j)(~j) =1 and (-j)(0) =0, we obtain
the following:

—Z(g/f)e"fcos(g) + 4(g/f)e—2f - Z(g/f)e—sfcos(g) ~ (g/f)ze—f sin(g)

+ (g/f)ze—sfsin(g) —e "3fsin(g) + e“fsin(g) =0 (23)
Equation 23, can be simplified and rewritten as

[1~(g/£)21Tef-e"f1 sin(g) - 2(g/8) (eF+e Fhcos(g) + 4(g/f) = 0 (24)
In discussions that follow, equation 24 will be referred to as the “tension

equation.”

17



Tension—equation Roots

In this section, we solve for f and g values that satisfy the tension
equation. Let P represent the expression left of the equal sign in
equation 24, After assigning a fixed (but arbitrary) value to f, we
evaluate P for a range of g values and then plot P versus g. The plot (not
shown) forms a smooth, sinuous curve that intersects the g axis an infinite
number of times. Fach intersection point satisfies the condition P = 0 and
therefore locates a root.

Figure 5, which shows a small section of the P-versus—g curve (solid
line), illustrates the root-finding technique. A root, shown by the open
circle, is located by a process of successive approximations. The first
approximation starts with two estimates of the root. One estimate, which is
labeled g;-1» is termed the “01d” estimate. The other, which is labeled
- is termed the current” estimate. An equation discussed in the
following section is used to evaluate a new estimate, labeled 8i+1- The
new estimate lies at the intersection of the "g” axis and the dashed line
drawn through the old and current estimates. This new estimate usually lies
closer to the true root than either the old or current estimates.

The equation for computing g;.q is based on the two shaded triangles on
figure 5. Because the triangles are similar, the ratio of matching sides
can be equated as follows:

[P(g;_1) - P(gy)] /P(g;) = (851 — 85)/(g;-8;541) (25)
After cross—multiplying and solving for g;,q, we obtain

8i+1 < 81 ~ P(gi)[(gi-gi_l)/(P(gi)—P(gi_l)] (26)

18
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Figure 5,--Secant method for locating tension-equation roots.
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Notice that the right side of equation 26 contains the old and current
estimates along with two P values, P(g;_4) and P(g;), which can be computed
from the left-hand expression in equation 24,

After computing g;,q from equation 26, the root estimates are updated
and relabeled. The value of g; is relabeled g;-1 and the value of g;,q is
relabeled 84 The original value of 8i-1 is discarded. Stated another way;
the three g—values are shifted backward in time and the oldest g value is
thrown away. Another iterative process is now started by returning to
equation 26 and evaluating a new value for Bi+1° The entire root~finding
process, commonly referred to as the “secant method, was programmed for a
digital computer. The program (see fig. 6) ran until the difference between
the current estimate and old estimate became too small to detect. When the
computer printed division by zero error (see fig. 7), the last computed
g;+1 value was taken as the true root.

The polynomial P has an infinite number of roots; however, the computer
converges on the root nearest the starting values. As an example, consider
the two runs shown on figure 7. The runs were based on the same value for
f, namely 3.0, but different starting values for g. For the first run, g was
started at 6: for the second run, g was started at 3. Despite this
difference, both runs converged on the same g—root——namely 5.34273357.
Because the computer stored all numbers to nine decimal places, each g root
was accurate to the seventh or possibly the eighth decimal place. Many runs
were made to insure all roots of interest were found.

The relation between f and three of the g roots is shown on figure 8.

For a given f value, the smallest g root lies on the curve labeled g1 and
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D$ = © ":REM CONTROL D

HOME

PRINT “THIS PROG PERTAINS TO THE VIBRATIONAL-FREQUENCY EQUATION FOR A
TUBE SUBJECTED TC AN AXIAL FORCE™

PRINT "ROOTS OF THE EQUATION ARE FOUND BY THE SECANT METHOD. ONE ROOT,
¥, IS ASSIGNED AND THE OTHER ROOT, G, IS COMPUTED” BY ITERATION.

PRINT "ENTER VALUE OF F~

INPUT F

PRINT D$; "PR#1”

PRINT “VALUE OF ROOT F IS “;F

PRINT D$; "PRAO™

PRINT “ENTFR ESTTMATED VALUE OF SECOND ROOT G

IKPUT XC

PRINT “ENTER A VALUE NEARLY EQUAL TO THE PRECEEDING INPUT™
INPUT X0

HOME

PRINT “ESTIMATE OF";”  “;"VALUE OF"
PRINT “rOOT ;"  ";"EQUATION"
G = XC

GOSUB 1000

PC = P

G = X0

GOSUB 1000

PO =P

N = XC - X0

D = PC - PO

XN = XC - PC * (N / D)

REM END OF SECANT COMP

G = XN

GOSUB 1000

PN = P

PRINT XN;~ PN

REM START UPDATE

X0 = XC

XC = XN

GOTO 65

END

R=1-6A2/FnA2
T=(-2)*G/F

S = EXF (F) - EXP ( - F)
U = EXP (F) + EXF { - F)
V=4*«G/F
P=R*8* SIN(G) +T*U* COS (G) +V
RETURN

re 6.--Program listing for the secant method.
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ENTER VALUE FOR F

ENTER ESTIMATED VALUE FOR ROOT G

76

ENTER A VALUE NEARLY EQUAL TO TEE PRECEEDING INPUT
?76.1

NEW ESTIMATE OF VALUE OF

ROOT G EQUATION
5.37467885 -2.28601221
5.34623264 ~.248477478
5.34276362 -2.13186815E-03
5.3427336 -1.95018947E-06
5.34273357 -9.87201929E-08
5.34273357 1.3038516E-07
5.34273357 ~9.87201929E-08
5.34273357 -9.87201929E-08

?DIVISION BY ZERC ERROR IN 120

JVALUE OF ROOT F IS 3

ENTER ESTIMATED VALUE OF SECOID RCOT G

73

ENTER A VALUE NEARLY EQUAL TO THE PRECEEDING INPUT
75

NEW ESTIMATE OF VALUE OF

ROOT G EQUATION
6.97285063 -119.033626
4.06984791 51.6438111
4.,94824242 24,5948866
5.7469438 -31.325129
5.29952934 3.02813778
5.33896759 .266898096
5.34277965 -3.26870568E-03
5.34273352 3.41795385E-06
5.34273357 -9.87201929E-08
5.34273357 1.3038516E-07
5.34273357 -9.87201929E-08
5.34273357 -9.87201929E-08

?DIVISION BY ZERO ERROR IN 120

Figure 7.--Sample outputs from the secant-method program.
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the next larger root lies on the curve labeled g,. The third root, taken in
order of ascending magnitude, lies on the curve labeled g3-

Fach of the g—root curves lies between asymptotic limits. For example,
as we assign smaller and smaller values to f, g1 increases and approaches 2m.
If we reverse the process by assigning larger and larger values to f, gq

decreases and approaches m.

Special Solutions of the Tension Equation

In this section, we compare special solutions of the tension equation
with results obtained by other investigators. However, before this
comparison can be made, the f-g roots must be linked to physical parameters
of vibrating tubes.

Farlier, we saw that the form of equation 8 matches the form of
equation 6 if a’=-a, By substituting this relation into equation 8 and
eliminating a’, we obtain

p* - (a2 - b24)p? - a%p? = ¢ 27
Equating the D2 coefficient in equation 6 to the p? coefficient in
equation 27 yields

a2-b2 = S/EI (28)
Equating the D0 coefficient in equation 6 to the D0 coefficient in
equation 27 yields

a?b? = rp2/EI (29)
Because a=f/L and b=g/L (see equations 17 and 18), we can rewrite

equation 28 as

£2 - g2 = sL2/E1 (30)
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Figure 8.-~Roots of the tension equation. A, B, and C locate equal
roots. At A, By = f = 10.9956078. At B, g, = f = 7.85320463,

At C, gy = f = 4.,73004075.
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and equation 29 as
£2g2 = L41p2/E1 (31)

Taking the square root of both sides of eguation 31 yields

£g = pL2/ VEI/z (32)

Equations 30 and 32 are graphed on figure 9. Points on the curve
labeled n = 1~ were obtained by first selecting an arbitrary value for f,
and then reading the maiching gy valne from figure 8. Finally, values for

the expressions fzmglz

and fgq were computed and plotted against ome
another. Points on the n = 2 curve were obtained in é similar manner. The
only difference was that g, values instead of g1 values were read from
figure 8.

Curves on figgre 9 are related to the modal shapes on figure 1. A tube
vibrates at its lowest frequency, pq» when the tube's modal shape matches
figure la, The freguency pq together with valuwes fox E, I, L, and S set an
operating point on the n = 1 curve of figure 8. If S = 0, the operating
point lies at the intersection of the n = 1 curve and the vertical axis
separating tension from compression regions. The same tube vibrates at a
higher frequency, Py, when the modal shape matches figure 1b. If S = 0, the
operating point lies at the intersection of the n = 2 curve and the vertical
axis. The tube vibrates at an even higher frequency, pP3, when the modal
shape matches figure lc. If S = 0, the operating point lies at the
intersection of the n = 3 curve and the vertical axis,

Let us examine the special case in which the tube is free of axial

forces. Equation 30 shows that if S = 0 then f = g. The bottom curve on
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Figure 9,--Tension~comnression regions for three modes of
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figure 8 shows that f equals g, at only one point. Both parameters egual
4.73004075, Squaring this value we obtain 22.373286 for fgl, the ordinate
of point D on figure 9. Following a similar line of reasoning, we obtain
61.672823 for fgy (point E on figure 9) and 120.903391 for fgy (point F on
figure 9). Table 1 lists these three fg, values and compares them with

values cited by Rothbart (1964) and Lalanne (1983). Notice that data from

all three sounrces agree closely.

Table 1.——Comparison of vibrational frequencies for the special case S = 0.

Source of Data

Frequency Figure 9 Rothbart Lalanne
Py 22.373286(2) (1) 22.37(Z) 22.37(2)
Py 61.672823(2) 61.62(Z) 61.67(Z)
P3 120.903391(Z) 120.(2) 120.9 (2)

(1) Z = \JEI/:L“

Let us now examine another special case in which a tube is subjected to
compressive forces. To this point in the discussion, S has been treated as
a tensive force as shown by the vector on figure 2b. We can make S a
compressive force by substituting -S for +S. On figure 9, operating points
with negative S values plot left of the vertical axis.

Tubes subjected to compressive forces have a vibrational property that
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can be studied experimentally with the aid of a yardstick or a straight,
slender rod. With the stick standing upright with its bottom end resting on
the flioor, apply a small downward force on the top end. The stick remains
straight but as the force slowly increases, the load reaches a critical
value and the stick buckles (bows sideways). The magnitude of this critical
force depends on the way in which the stick’s ends are supported. If both
ends are clamped so they remain plumb even after the center section buckles,
the critical force, which was derived by Laurson and Cox (1947), is

Sop = 4n°EI/L? | (33)

Compressive forces not only cause buckling but they also influence
vibrational frequencies. The influence can be gaged by running another
experiment on the yardstick., While maintaining small but steady downward
force on the top end, pull the center of the stick sideways and then release
the stick to excite the first mode of vibration. Repeating this test with
greater and greater downward forces reveals two things: (a) as compressive
force increases, vibrational frequency decreases and (b) when compressive
force equals or exceeds Scr’ vibration stops or, stated another way,
vibrational frequency becomes zero.

The experimental trend of the force—frequency relation agrees with
the theoretical trend on figure 9. Increasing the compressive force shifts
the operating point left and downward along the n = 1 curve. This shift is
accompanied by a decrease in frequency. When the operating point reaches the
horizontal axis, frequency becomes zero.

On figure 9, the point where the n = 1 curve intersects the horizontal
axis is related to S in equation 33. According to figure 9, fgq is zero

cr
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since the point falls on the horizontal axis; however, according to

figure 8, gq can never be smaller than about 3. To reach the point, f must

approach zero and gq must approach 2n. As we approach these limits, fz"g2
approaches -4n2, the point’s abscissa on figure 9, Glancing at the
horizontal—-axis variable, we see the following condition is met:

SL2/EI = ~4n® (34)

Solving equation 34 for S yields —4n2EI/L2, Except for a difference in
sign, this expression is identical to the right-hand expression in
equation 33, The difference in sign stems from a difference in definitions:
Laurson and Cox define a compressive force as positive but we define a
compressive force as mnegative.

Let us now focus om one more special case that applies to lomng,
slender, tightly—stretched strings. DenHartog (1947) derived the equation

p, = (an/L)(YS/r) (35)
where p, is the freguency of a string vibrating in its nt® mode. The
variable n takes om the values 1, 2, 3, etc. DenHartog’s equation can be
derived from equations 30 and 31 and data from figure 8, First, we solve
equation 30 for EI to obtain

EI = (SL2)/(£2-g2) (36)
Substituting the expression for EI into equation 31 and then solving for p

gives

p = [£g/\ £2-g211V8/rL2] (37)
Now consider a string having a fixed value for LZ/EI and acted upon by a
slowly increasing tensive force. As S increases, SLZ/EI increases and the

string’s operating point shifts to the right along the curves of figure 9.
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As this shift continues, fz—gz increases and, according to figure 8, f
becomes much larger than g. In the limit the expression inside the
left—hand braces of equation 37 approaches g. Figure 8 shows that gq
approaches n, g, approaches 2n, and g3 approaches 3m: in general, g,
approaches nn, DenHartog's equation is obtained by substituting nn for the
expression in the left braces of equation 37.

In summary, results from the tension equation agree with three special-
case studies reported by other investigators, These studies cover (a) tubes
free of all axial forces, {(b) tubes subjected to critical buckling forces
and, (c) tubes (or strings) subjected to large tensive forvces. In the next

section, we compare theoretical data from the temsion equation with

experimental data from an experimental sediment-concentration gage.

ANALYSIS OF EXPERIMENTAL DATA

Figure 10 shows details of a straight-tube sediment—concentration gage.
The guide vanes align the nose with the approaching flow so that water
enters the tube and then emezges downstream of the vanes. The hatch, which
can be removed for servicing parts inside the sleeve, forms an airtight
cover., The gas valve can be connected to a vacuum pump for removing air
inside the sleeve.

The tube is welded at three points——two at the front cap and one at the
rear cap. FEach of these welds forms a continuous band around the tube's
circumference. Although the tube cannot move at the welds, it can vibrate
in the span labeled 'L” on section BB. Two coils——one labeled “drive  and

the other labeled “sense ——are located at the center”of the span. The coils
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SECTION A-A

COIL SUPPORT CENTERING BOLT (1 OF 3)
SLEEVE /PIPE PLUG (I OF 2)
DRIVE COIL SENSE COIL
DRIVE COIL MAGNET SENSE COIL MAGNET
MAGNET RING
SCALE IN METERS
| L I
colL
SUPPORT yd
FRONT
CAP
WELD
SCALE IN METERS

0 0.5

GUIDE
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GAS
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B : ~.
NN——
FRONT VIEW SIDE VIEW LK
Fisure 10.--Straight-tube sediment gage.
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surround but do not touch the slender, rod-shaped magnets shown in section
AA., The magnets are fastened to the magnet ring which, in turn, is brazed
to the tube. The tube vibrates along the horizontal center line shown im
section AA, The magnet ring and magnets vibrate as a unit but the coils
remain statiomnary.

An electronic amplifier, which is not shown, sustains the vibration.
The amplifier's input terminals are connected to the sense coil and the
amplifier's output terminals are connected to the drive coil. Vibration of
the sense~coil magnet produces an electrical signal that is amplified and
then applied to the drive coil. The drive—coil voltage produces a magnetic
field that exerts a force on the drive—coil magnet, The feedback process is
regenerative——motion produces signal, signal produces force, and force
produces motion,

The permanent magnet in the drive coil plays a critical role in
transforming electric current to force., Two magnetic fields exist in the
air—gap between coil and magnet. The magnet’s field is strong and steady
but the coil's field is weak and its intensity and direction depend on the
electric current flowing in the winding. The two fields may oppose one
another or they may reinforce one another depending on the direction of
current flow., During each vibrational cycle, the current flows first in one
direction and then in the opposite direction. The net air—gap flux grows
and weakens in step with the current: however, the flux lines never change
direction. They always cross the air-gap in a direction set by the
permanent magnet. The magnitude of the force on the magnet waxes and wanes

in step with the intensity of the net flux but the frequency of the force

32



always matches the frequency of the current. Jf the permanent magnet is
replaced with a soft-iron core that has no field of its own, the frequency
of the force becomes twice the frequency of the coil current. Frequency-
doubling, which is undesirable, occurs because the net air-gap flux is
governed entirely by the current. When the current reverses, the net flﬁx
reverses; consequontly, the pulling forcoe on the core reaches two maximums
during each vibrational cycle.

The tube (figure 10) vibrates only in its first mode. All other modes
are eliminated through mechanical and electrical filtering. Even-numbered
modes (see fig. 1b) must have stationary center points, but the tube on
figure 10 cannot meet this requirement becauseo driving foroces vibrate the
center. All odd-numbered modes higher than the first are eliminated because
the frequencies are beyond the amplificr’s range or because the phasing

produces degenerative feedback.

PARAMETERS FOR THE STRAIGHT-TUBE SEDIMENT GAGE

This section discusses assumptions and approximations used in applying
the tenmsion equation to the straight—tube gage on figure 10.

The tension equation was derived for a tube having a uniformly-
distributed-mass so we need a way of distributing the concontrated mass of
the magnet ring and magnets shown on figure 10. Figure 11 shows a
concentrated mass, R, fastened to the center of a uniform tube. Ungar
(1964) cites the following equation for the first mode of vibration:

2

Py 192. EI/(R + 0.375 Lr)L3 (38)



DISTRIBUTED MASS, r CONCENTRATED MASS, R

SLEEVE -

Figure 11.--Tube vibrating in its first mode and carrving a
concentrated mass.
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This equation can be rewritten as:

py? = 512.EI/[(2.666 R/L) + r] L* (39)
The bracketed expression in equation 39 is the system’s distributed—mass
equivalent obtained by adding r for the uniform tube to 2.666 R/L for the
concentrated mass. Notice that if R = 0, equation 39 reduces to the pg
expression in table 1.

Later, we will apply the corxection 2.666R/L to the magnets and magnet
ring, then add the correction to the distributed mass of the steel tube, and
the distributed mass of the water and sediment inside the tube.

Let us now consider axial forces produced by temperature shifts, If
the welds on figure 10 are cut to free the tube and sleeve from mutually
interactive forces, a temperature rise of AT degrees lengthens L by an
amount AL. The temperature shift and length shift are related by the
equation

AL = K LAT (40)
where K is thermal coefficient of expansion.

The sleeve is a high-strength carbon-steel alloy with a K, value of about
12.5 x 10~6. The tube is type 304 stainless steel with a K; value of about
17. x 1076,

Because the sleeve and tube have different Kt values, the temperature
shift creates an axial force. To establish the direction of this force,
assume the welds are cut while the tube and sleeve are under no axial
force. The welds remain aligned with one another. But if the tube and
sleeve are now warmed, the tube lengthens more than the sleeve (see

equation 40) and the welds shift apart, To realign the welds, the tube must
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be compressed and the sleeve must be stretched., Afier the welds have been
rejoined, the tube exerts a tensive force on the sbell and ithe shell exerts
a compressive force on the tube.

An axial force produces a deflection {(strain) in the sleeve and tube;
however, the strain in the sleeve is always small compared to the strain in
the tube. The force on the tube is distributed over a small cross—sectional
area——about 0.00004 square meters——but the force on the shell is distribuoted
over a much larger area——about 0.0054 square meters.

As we have seen, temperature influences “8™ in the tensiom equation.
However, temperature also influences the tube's area moment-of-inextia,
given by

e (/e - b (41)

i

In this equation, r, and r; are respectively the tube’s outside radius and

inside radius. Both of these radii incsrease if the tube is warmed and they
decrease 1f the tube is cooled.
The following two eguations relate a temperature shift dT, to an ouvter-

radies shift dro and inner-radivs shift dri:

dr, = K v, (dT) (42)

dl'i

E;r;(dT) (43)
Designating I as the arvea moment of inertia (AMOI) at temperatvre T and
designating dI as the change in AMCI caused by a temperature shift 4T, we
write

dI = [(91/8z ) (ér,/8T) + (81/0r;)(9r;/8T)]aT (44)

partial derivatives of eyuations 41, 42, and 43, and then

36



substituting the derivatives into equation 44, we obtain

dI = nk (x4 - £;Mar (45)
Substituting the expression for I{equation 41) into equation 45, we
4K, I dT (46)
Designating IT+AT as the AMOI at T+AT, we obtain

Ipjpr = Ip + dI (47)
After substituting equation 46 into equation 47 and then simplifying the
result, we obtain

Lrepr = Tp(1+4KpAT) (48)
Equation 48 is useful because it enables us to compute the AMOTI at T + AT
from the AMOI at T,

We can now evaluate vibrational constants for the gage on figure 10,
Values for water density (see table 2) were taken from Hodgman (1910).
Values for L were obtained by first measuring the distance between welds
(see fig. 10) at 20° C and then using equation 40 to evaluate lengths for
all other temperatures in the table. In equation 40, K; was taken as
12.5 x 1075, Values for “inside diameter of tube” were obtained by first
measuring the diameter at 0° C and then using equation 40 to evalumate
diaméters for other temperatures in the table. Values for “eross-sectional

area of tube bore were computed from the equation A = nd12/4.
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Table 2.——Vibrational constants for various temperatures.
E(tube's elastic—modulus) = 193. x 109 N/m2

for the gage on figure 10,
for all temperatures.

T,
temperature
in degrees

Celsius

0
10
20
30
40

TJ
temperature
in degrees

Celsius

0
10
20
30
40

T,
temperatuzre
in degrees

Celsius

0
10
20
30
40

Water density,

in Kg/m3

999.87
999.73
998.23
995.67
992.24

Cross—sectional
area of tube

bore in m

0.000466983

0.000467142
0.000467301
0.000467460
0.000467619

rconcentrated,
distributed mass

of ring and magnets

in Kg/n

0.4454663
0.4454123
0.4453534
0.4453044
0.4452505

L

tube length

in meters

. 90805
.90816
. 90827
.90838
.90849

SO OO

I, moment of
inertia of
tube inm

3.0781320x1077
3.0802251x1077
3.0823182x107°
3.0844114x107°
3.0865045x107°

Tyater

distributed mass
of water, in

Kg/m

0.466922290
0.467015872
0.466473877
0.465435898
0.463990277

All values are

r;,
inside diameter
of tube, in
meters

0.024384048
0.024388193
0.024392338
0.0243964383
0.024400628

Ttube,
distributed mass
of tube, in
Kg/m

0.31860309
0.31856449
0.31852590
0.31848735
0.31844878

r, total
distributed mass,
in Kg/m

1.23099168
1.23099268
1.23035324
1.22922769
1.22768959



Values for I, moment~of-inertia of tube” were computed from
equations 41 and 48 along with measurements of r; and r, at 0° C. Values
for Tiube Were obtained by dividing the mass of the tube between welds
(0.31860309 Kg) by L. Values for fconcentrated mass Were obtained from the
expression 2.666(0.15169)/L (see equation 39), The value in parenthesis is
the mass in Kg of the magnet—~ring assembly.

Each value for r was computed from the volume of = one—meter

water

length of the tube. The volume was then multiplied by the concomitant

water—density value in the table. Values for “r” were computed from the

equation, r = +

Tconcentrated = Ttube Twater®

Most of the values in table 2 contain more decimal places than
measurements warrant. For example, L is given to five decimal places but
these values are based on a measurement that was accurate to only four
decimal places. Fxtra decimal places are cited to show small shifts in the

vibrational constants.

COMPARISON OF MEASURED FREQUENCIES AND THEORETICAL FREQUENCIES

Szalona (1986) measured vibrational frequencies for the gage on figure
10. The gage was submerged in a water bath comnected to a temperature-
controlled reservoir of sediment~free water. After the water bath,
reservoir, sleeve, and tube had all stabilized at the same temperature, the
tube’s vibrational frequency was recorded. The water was then warmed a few
degrees. After a restabilization period, another frequency reading was
collected. As figure 12 shows, the measured-frequency data plotted along a

nearly~straight line having a negative slope.
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Figure 12.--Comparison of measured and theoretical

frequencies.
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The trend of the measured data shows temperature exerts a strong
influence on metallic parts of the gage. Assume, for the moment, that the
gage responds only to shifts in water density. Figure 12 shows that water
reaches its maximum density at 4° C. Starting at this temperature, a
warming trend has the same effect as a cooling trend——density decreases and
vibrational frequency increases. Frequency data would therefore plot along
a bowl-shaped curve (concave upward) instead of a straight, downward-sloping
line,

Temperature induced shifts in L, I, and r can be studied by using the
tension equation and values from table 2. First, consider the special case,
S =0, At all temperatures, the tube operates at the point on figure 13
where the n = 1 curve crosses the vertical axis. At this point

oL2/\EI/x = 22.373286 (49)
Substituting values for E, I, r, and L (see table 2) into equation 49 and
then solving the equation for p yields points on the bottom curve of
figure 12. Comparing this theoretical curve with the measured-data curve on
figure 12 reveals two discrepancies: (a) the theoretical curve plots below
the measured curve and (b) the theoretical curve has a positive slope but
the measured curve has a negative slope.

‘What happens to frequency discrepancies if S takes on non-zero values?
Because S was not measured, we must estimate its value by reverse
calculating. First, values for E, I, r, and L at 0° C (table 2) and the
measured frequency at 0° C (653.5 radians per second) are substituted into
equation 32, We obtain fgq = 24.53. Then, opposite fgy on figure 12, we

read SLZ/EI = 8.0. Solving this equation for S and then substituting
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values for E, I, and L, yields S = +5763 newtons (+1296 pounds). The
positive sign indicates the tube is under tension at 0° C.

If the tube and shell are warmed, S decreases. The change in $ can
be computed by assuming the tube and shell are free to expand independently.
If both parts are warmed to 40° C, the tube’s length changes by (17. x 10"6)
(0.90805)(40) = 617 micrometers and the sleeve's length changes by
(12.5 x 107%) (.90805)(40) = 454 micrometers. The tube must now be
compressed 163 micrometers to rejoin the welds., The required compressive
force AS is obtained from the equation:

E = stress/strain = (AS/A)/(AL/L) (50)
In this equation, A is the tube’s cross—sectional area, L is the tube's
length, AS is the applied force, and AL is the change in tube length.
Solving equation 50 for AS and then substituting 193. x 107 for E,

163 x 1076 for AL, 39.73 x 1076 for A, and 0.90805 for L, yields
AS = 1376 newtons., Because the relation between AS and AT is linear, we
write

AS = (AT)(-1376/40) (51)
where AT is in degrees Celsius and AS is in newtons.

Frequencies for a range of temperatures can now be computed. For
example, assume temperature shifts from 0° C to 10° C. According to
equation 51, S decreases by 340 newtons. With S at 5423 newtons, £2 - g12
(see figure 13) becomes 7.52 and fgq becomes 24.41. Solving equation 32 for
pq yields 650.9 radians per second. The relation between py and T is
closely approximated by the straight line labeled “theoretical frequencies

with axial forces applied” on figure 12.
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Figure 12 shows this new theoretical plot and the measured—frequency
plot have two features in common: both plots are nearly straight and both
have negative slopes., Tension apparently plays a significant role in

controlling the gage's frequency.

TEMPORAL SHIFTS IN FREQUENCY

Earlier, we computed a tensive force of 5763 newtons in the tube. The
origin of this large force is a matter of speculation since no deliberate
effort was made to stretch the tube during assembly. The force was probably
created by high temperatures used in welding. Points inside the welds were
heated to about 1400° C ——the melting temperature of stainless steel-—but
points outside the welds remained cooler., For computational purposes, let
us take 1500 C as the average temperature along the sleeve and 800° C as the
average temperature along the tube. The parts are assigned different
temperatures because of contrasting weights and surface areas. Compared to
the tube, (a) the sleeve has a larger mass and consequently warms at a
slower rate and (b) the sleeve has a larger surface area and consequently
radiates heat at a faster rate.

After all welds were complete, the tube and sleeve were allowed to
cool, Ve can estimate forces that developed during the cooling process by
working with initial and final conditions. For initial conditions, assume
(a) the sleeve and tube temperatures were 150° C and 800° C respectively,
(b) the sleeve and tube were locked together but neither part was under
stress and (¢) the distance between welds was 0.91032 meters. For final

conditions, assume the sleeve and tube were at a temperature of 0° C.
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According to equation 40, the sleeve's final length was 0.90805 meters and
the tube's final length was 0.89794 meters. The difference between these
two lengths is critical. Stretching the tube 0.01011 meters requires a
force of about 86,000 newtons (19,000 pounds). Dividing this force by the
cross—-section area of the tube gives about 2. x 107 newtons/m2~—a stress
that exceeds elastic limits for stainless steell!

The existence of hyperelastic stresses is affirmed by some experimental
data., A few days after cooling, the gage’s vibrational frequency was 724
radians/second; five months later, the frequency was 651, radians/second.
Metals subjected to hyperelastic stresses tend to lengthen at slow rates.
Gela (1964) states the lengthening process may continue for months or even
years, In the experimental gage, stretching would have reduced tensive
forces and shifted the tube's operating point (see figure 13) leftward and
downward along the n = 1 curve. These shifts may have caused the frequency
reduction,

CONCLUSIONS

The tension equation is a useful tool for analyzing frequencies in a
vibrational-type sediment gage. Roots of the equation are linked to slurry
densities and, more importantly, to mechanical properties of the tube
itself. These properties include thermal-expansion coefficient, elasticity
coefficient, tube diameter, tube length, and tensive force. The equation
can be used to select optimum dimensions and properties of critical
components in the instrument. Values computed from the equation indicates
frequency instabilities observed in the experimental gage were caused by

high temperatures used in the welding process.
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APPENDIX A - NOTATION

The following symbols are used in this paper:

S

X, ¥

Force exerted along the
axis of a vibrating tube

Horizontal and vertical
distances in a Cartesian

system

Shear stress in a vibrating
tube

Qutside radius and inside
radius

Total mass per unit length
of a vibrating tube

Mass per unit length of the
tube walls, mass per unit
length of the water in the
tube, and eguivalent mass
per unit length of R

Elastic modulus of the tube

Base of matural logrithims

Area moment—of-inertia

A function of x that defines
the elastic curve for a
vibrating tube

Time

The imaginary operator,\/—l

Angular frequency

Coefficients of terms in
the modal shape equation X,

Free length of a vibrating
tube

Mass concentrated at the mid-
point of a vibrating tube
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N (newtons)

m (meters)

N/M2

Kg/m (kilogram/m)

Kg/m

N/m

s (seconds)

radians/s

Kg



a, jb, -a,

f, g

M

Differential operator d/dt

Roots of the auxiliary
equation

Coefficients in the tension
equation, f = al and g = bL

Coefficient of thermal micrometers/m/
expansion per © C
Cross section area based m2

on the inside diameter of
the vibrating tube

Bending moment in the Kg—m
vibrating tube
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